Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.01065
Cited By
When Gaussian Process Meets Big Data: A Review of Scalable GPs
3 July 2018
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"When Gaussian Process Meets Big Data: A Review of Scalable GPs"
32 / 82 papers shown
Title
Revisiting Memory Efficient Kernel Approximation: An Indefinite Learning Perspective
Simon Heilig
Maximilian Münch
Frank-Michael Schleif
28
1
0
18 Dec 2021
BoGraph: Structured Bayesian Optimization From Logs for Expensive Systems with Many Parameters
Sami Alabed
Eiko Yoneki
17
7
0
16 Dec 2021
Comparing Machine Learning and Interpolation Methods for Loop-Level Calculations
Ibrahim Chahrour
J. Wells
6
12
0
29 Nov 2021
Non-separable Spatio-temporal Graph Kernels via SPDEs
A. Nikitin
S. T. John
Arno Solin
Samuel Kaski
AI4TS
33
17
0
16 Nov 2021
Contraction rates for sparse variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
54
17
0
22 Sep 2021
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes
Jongseo Lee
Jianxiang Feng
Matthias Humt
M. Müller
Rudolph Triebel
UQCV
48
21
0
20 Sep 2021
Scalable Multi-Task Gaussian Processes with Neural Embedding of Coregionalization
Haitao Liu
Jiaqi Ding
Xinyu Xie
Xiaomo Jiang
Yusong Zhao
Xiaofang Wang
BDL
34
14
0
20 Sep 2021
Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors
Liwei Wang
Suraj Yerramilli
Akshay Iyer
D. Apley
Ping Zhu
Wei Chen
38
25
0
26 Jun 2021
Deep Gaussian Processes: A Survey
Kalvik Jakkala
AI4CE
GP
BDL
29
19
0
21 Jun 2021
Adaptive machine learning for protein engineering
B. Hie
Kevin Kaichuang Yang
32
80
0
10 Jun 2021
Deep Probabilistic Time Series Forecasting using Augmented Recurrent Input for Dynamic Systems
Haitao Liu
Changjun Liu
Xiaomo Jiang
Xudong Chen
Shuhua Yang
Xiaofang Wang
BDL
AI4TS
44
2
0
03 Jun 2021
Scalable Cross Validation Losses for Gaussian Process Models
M. Jankowiak
Geoff Pleiss
23
6
0
24 May 2021
Lightweight Distributed Gaussian Process Regression for Online Machine Learning
Zhenyuan Yuan
Minghui Zhu
21
4
0
11 May 2021
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
142
17
0
23 Apr 2021
Data-Driven Robust Barrier Functions for Safe, Long-Term Operation
Y. Emam
Paul Glotfelter
S. Wilson
Gennaro Notomista
M. Egerstedt
11
25
0
15 Apr 2021
ARXON: A Framework for Approximate Communication over Photonic Networks-on-Chip
Febin P. Sunny
Asif Mirza
Ishan G. Thakkar
Mahdi Nikdast
S. Pasricha
14
17
0
16 Mar 2021
Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks
Daniel Schwalbe-Koda
Aik Rui Tan
Rafael Gómez-Bombarelli
AAML
31
60
0
27 Jan 2021
Transferring model structure in Bayesian transfer learning for Gaussian process regression
Milan Papez
A. Quinn
21
11
0
18 Jan 2021
Twin Neural Network Regression
S. J. Wetzel
Kevin Ryczko
R. Melko
Isaac Tamblyn
UQCV
28
11
0
29 Dec 2020
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
21
26
0
22 Oct 2020
Lateral Force Prediction using Gaussian Process Regression for Intelligent Tire Systems
B. Barbosa
N. Xu
H. Askari
A. Khajepour
6
26
0
25 Sep 2020
Planning from Images with Deep Latent Gaussian Process Dynamics
Nathanael Bosch
Jan Achterhold
Laura Leal-Taixé
J. Stückler
17
1
0
07 May 2020
Scaled Vecchia approximation for fast computer-model emulation
Matthias Katzfuss
J. Guinness
E. Lawrence
19
40
0
01 May 2020
Gaussian Process Learning-based Probabilistic Optimal Power Flow
Parikshit Pareek
H. Nguyen
13
35
0
16 Apr 2020
Large-scale Environmental Data Science with ExaGeoStatR
Sameh Abdulah
Yuxiao Li
JIAN-PENG Cao
Hatem Ltaief
David E. Keyes
M. Genton
Ying Sun
25
10
0
23 Jul 2019
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
12
226
0
19 Mar 2019
GPdoemd: a Python package for design of experiments for model discrimination
Simon Olofsson
Lukas Hebing
Sebastian Niedenführ
M. Deisenroth
Ruth Misener
27
18
0
05 Oct 2018
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
72
171
0
08 Jul 2017
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
92
271
0
24 Feb 2014
Local Gaussian process approximation for large computer experiments
R. Gramacy
D. Apley
127
392
0
02 Mar 2013
Variable noise and dimensionality reduction for sparse Gaussian processes
Edward Snelson
Zoubin Ghahramani
87
79
0
27 Jun 2012
A Framework for Evaluating Approximation Methods for Gaussian Process Regression
Krzysztof Chalupka
Christopher K. I. Williams
Iain Murray
GP
71
169
0
29 May 2012
Previous
1
2