ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.01065
  4. Cited By
When Gaussian Process Meets Big Data: A Review of Scalable GPs

When Gaussian Process Meets Big Data: A Review of Scalable GPs

3 July 2018
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
    GP
ArXivPDFHTML

Papers citing "When Gaussian Process Meets Big Data: A Review of Scalable GPs"

50 / 68 papers shown
Title
Safety and optimality in learning-based control at low computational cost
Safety and optimality in learning-based control at low computational cost
Dominik Baumann
Krzysztof Kowalczyk
Cristian R. Rojas
K. Tiels
Pawel Wachel
34
0
0
12 May 2025
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
128
0
0
04 May 2025
Geometry-aware Active Learning of Spatiotemporal Dynamic Systems
Geometry-aware Active Learning of Spatiotemporal Dynamic Systems
Xizhuo
Zhang
AI4CE
29
0
0
26 Apr 2025
From Target Tracking to Targeting Track -- Part III: Stochastic Process Modeling and Online Learning
Tiancheng Li
Jingyuan Wang
Guchong Li
Dengwei Gao
55
2
0
03 Mar 2025
Machine learning for modelling unstructured grid data in computational physics: a review
Machine learning for modelling unstructured grid data in computational physics: a review
Sibo Cheng
Marc Bocquet
Weiping Ding
Tobias S. Finn
Rui Fu
...
Yong Zeng
Mingrui Zhang
Hao Zhou
Kewei Zhu
Rossella Arcucci
PINN
AI4CE
114
0
0
13 Feb 2025
Bayesian Optimization by Kernel Regression and Density-based Exploration
Bayesian Optimization by Kernel Regression and Density-based Exploration
Tansheng Zhu
Hongyu Zhou
Ke Jin
Xusheng Xu
Qiufan Yuan
Lijie Ji
161
0
0
10 Feb 2025
Sparsity-Aware Distributed Learning for Gaussian Processes with Linear Multiple Kernel
Sparsity-Aware Distributed Learning for Gaussian Processes with Linear Multiple Kernel
Richard Cornelius Suwandi
Zhidi Lin
Feng Yin
Zhiguo Wang
Sergios Theodoridis
GP
67
1
0
17 Jan 2025
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Yunyue Wei
Vincent Zhuang
Saraswati Soedarmadji
Yanan Sui
153
0
0
31 Dec 2024
Review of Recent Advances in Gaussian Process Regression Methods
Review of Recent Advances in Gaussian Process Regression Methods
Chenyi Lyu
Xingchi Liu
Lyudmila Mihaylova
GP
29
3
0
12 Sep 2024
Gaussian Process Upper Confidence Bounds in Distributed Point Target
  Tracking over Wireless Sensor Networks
Gaussian Process Upper Confidence Bounds in Distributed Point Target Tracking over Wireless Sensor Networks
Xingchi Liu
Lyudmila Mihaylova
Jemin George
T. Pham
40
9
0
11 Sep 2024
Variational Stochastic Gradient Descent for Deep Neural Networks
Variational Stochastic Gradient Descent for Deep Neural Networks
Haotian Chen
Anna Kuzina
Babak Esmaeili
Jakub M. Tomczak
52
0
0
09 Apr 2024
Real-Time Line-Based Room Segmentation and Continuous Euclidean Distance
  Fields
Real-Time Line-Based Room Segmentation and Continuous Euclidean Distance Fields
Erik Warberg
Adam Miksits
Fernando S. Barbosa
3DV
23
0
0
07 Feb 2024
Constraint-Guided Online Data Selection for Scalable Data-Driven Safety
  Filters in Uncertain Robotic Systems
Constraint-Guided Online Data Selection for Scalable Data-Driven Safety Filters in Uncertain Robotic Systems
Jason J. Choi
F. Castañeda
Wonsuhk Jung
Bike Zhang
Claire J. Tomlin
K. Sreenath
35
3
0
23 Nov 2023
Neural Network Methods for Radiation Detectors and Imaging
Neural Network Methods for Radiation Detectors and Imaging
S. Lin
S. Ning
H. Zhu
T. Zhou
C. L. Morris
S. Clayton
M. Cherukara
R. T. Chen
Z. Wang
AI4CE
32
5
0
09 Nov 2023
Resource-Efficient Cooperative Online Scalar Field Mapping via
  Distributed Sparse Gaussian Process Regression
Resource-Efficient Cooperative Online Scalar Field Mapping via Distributed Sparse Gaussian Process Regression
Tianyi Ding
Ronghao Zheng
Senlin Zhang
Meiqin Liu
28
1
0
19 Sep 2023
Distributionally Robust Statistical Verification with Imprecise Neural Networks
Distributionally Robust Statistical Verification with Imprecise Neural Networks
Souradeep Dutta
Michele Caprio
Vivian Lin
Matthew Cleaveland
Kuk Jin Jang
I. Ruchkin
O. Sokolsky
Insup Lee
OOD
AAML
49
7
0
28 Aug 2023
Learning-based Control for PMSM Using Distributed Gaussian Processes
  with Optimal Aggregation Strategy
Learning-based Control for PMSM Using Distributed Gaussian Processes with Optimal Aggregation Strategy
Zhenxiao Yin
X. Dai
Zewen Yang
Yang-Wu Shen
Georges Hattab
Haiying Zhao
33
10
0
26 Jul 2023
Bayesian Optimisation Against Climate Change: Applications and
  Benchmarks
Bayesian Optimisation Against Climate Change: Applications and Benchmarks
Sigrid Passano Hellan
Christopher G. Lucas
Nigel H. Goddard
34
1
0
07 Jun 2023
Uniform approximation of common Gaussian process kernels using
  equispaced Fourier grids
Uniform approximation of common Gaussian process kernels using equispaced Fourier grids
A. Barnett
P. Greengard
M. Rachh
23
7
0
18 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
33
75
0
07 May 2023
Mixtures of Gaussian process experts based on kernel stick-breaking
  processes
Mixtures of Gaussian process experts based on kernel stick-breaking processes
Yuji Saikai
Khue-Dung Dang
17
0
0
26 Apr 2023
Error analysis of regularized trigonometric linear regression with
  unbounded sampling: a statistical learning viewpoint
Error analysis of regularized trigonometric linear regression with unbounded sampling: a statistical learning viewpoint
Anna Scampicchio
Elena Arcari
M. Zeilinger
17
1
0
16 Mar 2023
Application of probabilistic modeling and automated machine learning
  framework for high-dimensional stress field
Application of probabilistic modeling and automated machine learning framework for high-dimensional stress field
Lele Luan
Nesar Ramachandra
S. Ravi
Anindya Bhaduri
Piyush Pandita
Prasanna Balaprakash
M. Anitescu
Changjie Sun
Liping Wang
AI4CE
27
0
0
15 Mar 2023
Sharp Calibrated Gaussian Processes
Sharp Calibrated Gaussian Processes
A. Capone
Geoff Pleiss
Sandra Hirche
UQCV
42
4
0
23 Feb 2023
Violation-Aware Contextual Bayesian Optimization for Controller
  Performance Optimization with Unmodeled Constraints
Violation-Aware Contextual Bayesian Optimization for Controller Performance Optimization with Unmodeled Constraints
Wenjie Xu
Colin N. Jones
B. Svetozarevic
C. Laughman
Ankush Chakrabarty
22
9
0
28 Jan 2023
Multiple Imputation with Neural Network Gaussian Process for
  High-dimensional Incomplete Data
Multiple Imputation with Neural Network Gaussian Process for High-dimensional Incomplete Data
Zongyu Dai
Zhiqi Bu
Q. Long
35
4
0
23 Nov 2022
Deep Gaussian Processes for Air Quality Inference
Deep Gaussian Processes for Air Quality Inference
Aadesh Desai
Eshan Gujarathi
Saagar Parikh
Sachin Yadav
Zeel B Patel
Nipun Batra
36
2
0
18 Nov 2022
ET-AL: Entropy-Targeted Active Learning for Bias Mitigation in Materials
  Data
ET-AL: Entropy-Targeted Active Learning for Bias Mitigation in Materials Data
Hengrui Zhang
Wei Chen
J. Rondinelli
Wei Chen
AI4CE
19
17
0
15 Nov 2022
Safe and Adaptive Decision-Making for Optimization of Safety-Critical
  Systems: The ARTEO Algorithm
Safe and Adaptive Decision-Making for Optimization of Safety-Critical Systems: The ARTEO Algorithm
Buse Sibel Korkmaz
Marta Zagórowska
Mehmet Mercangöz
27
2
0
10 Nov 2022
Atlas: Automate Online Service Configuration in Network Slicing
Atlas: Automate Online Service Configuration in Network Slicing
Qiang Liu
Nakjung Choi
Tao Han
15
7
0
30 Oct 2022
Uncertainty Estimation for Multi-view Data: The Power of Seeing the
  Whole Picture
Uncertainty Estimation for Multi-view Data: The Power of Seeing the Whole Picture
M. Jung
He Zhao
Joanna Dipnall
Belinda Gabbe
Lan Du
UQCV
EDL
57
12
0
06 Oct 2022
Optimal Sensor Placement in Body Surface Networks using Gaussian
  Processes
Optimal Sensor Placement in Body Surface Networks using Gaussian Processes
Emad Alenany
Changqing Cheng
11
0
0
07 Sep 2022
Recursively Feasible Probabilistic Safe Online Learning with Control
  Barrier Functions
Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions
F. Castañeda
Jason J. Choi
Wonsuhk Jung
Bike Zhang
Claire Tomlin
K. Sreenath
48
6
0
23 Aug 2022
Data-Driven Stochastic AC-OPF using Gaussian Processes
Data-Driven Stochastic AC-OPF using Gaussian Processes
M. Mitrovic
A. Lukashevich
Petr Vorobev
Vladimir Terzija
S. Budenny
Yury Maximov
Deepjoyti Deka
30
4
0
21 Jul 2022
D-CIPHER: Discovery of Closed-form Partial Differential Equations
D-CIPHER: Discovery of Closed-form Partial Differential Equations
Krzysztof Kacprzyk
Zhaozhi Qian
M. Schaar
AI4CE
27
1
0
21 Jun 2022
Recent Advances in Bayesian Optimization
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
38
199
0
07 Jun 2022
Forward variable selection enables fast and accurate dynamic system
  identification with Karhunen-Loève decomposed Gaussian processes
Forward variable selection enables fast and accurate dynamic system identification with Karhunen-Loève decomposed Gaussian processes
Kyle Hayes
Michael W. Fouts
Ali Baheri
D. Mebane
33
0
0
26 May 2022
Fast Gaussian Process Posterior Mean Prediction via Local Cross
  Validation and Precomputation
Fast Gaussian Process Posterior Mean Prediction via Local Cross Validation and Precomputation
Alec M. Dunton
Benjamin W. Priest
Amanda Muyskens
GP
32
3
0
22 May 2022
Fully Decentralized, Scalable Gaussian Processes for Multi-Agent
  Federated Learning
Fully Decentralized, Scalable Gaussian Processes for Multi-Agent Federated Learning
George P. Kontoudis
D. Stilwell
FedML
6
8
0
06 Mar 2022
Learning Multi-Task Gaussian Process Over Heterogeneous Input Domains
Learning Multi-Task Gaussian Process Over Heterogeneous Input Domains
Haitao Liu
Kai Wu
Yew-Soon Ong
Chao Bian
Xiaomo Jiang
Xiaofang Wang
19
7
0
25 Feb 2022
Improved Convergence Rates for Sparse Approximation Methods in
  Kernel-Based Learning
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning
Sattar Vakili
Jonathan Scarlett
Da-shan Shiu
A. Bernacchia
25
18
0
08 Feb 2022
MeltpoolNet: Melt pool Characteristic Prediction in Metal Additive
  Manufacturing Using Machine Learning
MeltpoolNet: Melt pool Characteristic Prediction in Metal Additive Manufacturing Using Machine Learning
Parand Akbari
Francis Ogoke
Ning-Yu Kao
Kazem Meidani
Chun-Yu Yeh
William Lee
A. Farimani
AI4CE
21
86
0
26 Jan 2022
Unboxing the graph: Neural Relational Inference for Mobility Prediction
Unboxing the graph: Neural Relational Inference for Mobility Prediction
M. Tygesen
Francisco Câmara Pereira
Filipe Rodrigues
AI4TS
20
2
0
25 Jan 2022
Revisiting Memory Efficient Kernel Approximation: An Indefinite Learning
  Perspective
Revisiting Memory Efficient Kernel Approximation: An Indefinite Learning Perspective
Simon Heilig
Maximilian Münch
Frank-Michael Schleif
26
1
0
18 Dec 2021
Non-separable Spatio-temporal Graph Kernels via SPDEs
Non-separable Spatio-temporal Graph Kernels via SPDEs
A. Nikitin
S. T. John
Arno Solin
Samuel Kaski
AI4TS
27
17
0
16 Nov 2021
Contraction rates for sparse variational approximations in Gaussian
  process regression
Contraction rates for sparse variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
52
17
0
22 Sep 2021
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks
  with Sparse Gaussian Processes
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes
Jongseo Lee
Jianxiang Feng
Matthias Humt
M. Müller
Rudolph Triebel
UQCV
48
21
0
20 Sep 2021
Scalable Gaussian Processes for Data-Driven Design using Big Data with
  Categorical Factors
Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors
Liwei Wang
Suraj Yerramilli
Akshay Iyer
D. Apley
Ping Zhu
Wei Chen
38
25
0
26 Jun 2021
Deep Gaussian Processes: A Survey
Deep Gaussian Processes: A Survey
Kalvik Jakkala
AI4CE
GP
BDL
26
19
0
21 Jun 2021
Adaptive machine learning for protein engineering
Adaptive machine learning for protein engineering
B. Hie
Kevin Kaichuang Yang
27
80
0
10 Jun 2021
12
Next