ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.00906
  4. Cited By
Uncertainty in the Variational Information Bottleneck

Uncertainty in the Variational Information Bottleneck

2 July 2018
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
ArXivPDFHTML

Papers citing "Uncertainty in the Variational Information Bottleneck"

27 / 27 papers shown
Title
Weakly-Supervised Residual Evidential Learning for Multi-Instance
  Uncertainty Estimation
Weakly-Supervised Residual Evidential Learning for Multi-Instance Uncertainty Estimation
Pei Liu
Luping Ji
EDL
29
4
0
07 May 2024
Planning to Go Out-of-Distribution in Offline-to-Online Reinforcement
  Learning
Planning to Go Out-of-Distribution in Offline-to-Online Reinforcement Learning
Trevor A. McInroe
Adam Jelley
Stefano V. Albrecht
Amos Storkey
OffRL
OnRL
28
6
0
09 Oct 2023
Quantifying Model Uncertainty for Semantic Segmentation using Operators
  in the RKHS
Quantifying Model Uncertainty for Semantic Segmentation using Operators in the RKHS
Rishabh Singh
José C. Príncipe
UQCV
39
3
0
03 Nov 2022
Latent Discriminant deterministic Uncertainty
Latent Discriminant deterministic Uncertainty
Gianni Franchi
Xuanlong Yu
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
David Filliat
UQCV
24
18
0
20 Jul 2022
GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot
  Learning
GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot Learning
Zhi Chen
Yadan Luo
Sen Wang
Jingjing Li
Zi Huang
21
14
0
05 Jul 2022
Bounds all around: training energy-based models with bidirectional
  bounds
Bounds all around: training energy-based models with bidirectional bounds
Cong Geng
Jia Wang
Zhiyong Gao
J. Frellsen
Søren Hauberg
24
15
0
01 Nov 2021
Unsupervised Class-Incremental Learning Through Confusion
Unsupervised Class-Incremental Learning Through Confusion
Shivam Khare
Kun Cao
James M. Rehg
SSL
CLL
24
6
0
09 Apr 2021
DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial
  Estimation
DICE: Diversity in Deep Ensembles via Conditional Redundancy Adversarial Estimation
Alexandre Ramé
Matthieu Cord
FedML
53
51
0
14 Jan 2021
TabTransformer: Tabular Data Modeling Using Contextual Embeddings
TabTransformer: Tabular Data Modeling Using Contextual Embeddings
Xin Huang
A. Khetan
Milan Cvitkovic
Zohar Karnin
ViT
LMTD
157
420
0
11 Dec 2020
The Hidden Uncertainty in a Neural Networks Activations
The Hidden Uncertainty in a Neural Networks Activations
Janis Postels
Hermann Blum
Yannick Strümpler
Cesar Cadena
Roland Siegwart
Luc Van Gool
Federico Tombari
UQCV
32
22
0
05 Dec 2020
Further Analysis of Outlier Detection with Deep Generative Models
Further Analysis of Outlier Detection with Deep Generative Models
Ziyu Wang
Bin Dai
David Wipf
Jun Zhu
17
39
0
25 Oct 2020
Maximum-Entropy Adversarial Data Augmentation for Improved
  Generalization and Robustness
Maximum-Entropy Adversarial Data Augmentation for Improved Generalization and Robustness
Long Zhao
Ting Liu
Xi Peng
Dimitris N. Metaxas
OOD
AAML
27
165
0
15 Oct 2020
Ramifications of Approximate Posterior Inference for Bayesian Deep
  Learning in Adversarial and Out-of-Distribution Settings
Ramifications of Approximate Posterior Inference for Bayesian Deep Learning in Adversarial and Out-of-Distribution Settings
John Mitros
A. Pakrashi
Brian Mac Namee
UQCV
26
2
0
03 Sep 2020
Detecting Out-of-distribution Samples via Variational Auto-encoder with
  Reliable Uncertainty Estimation
Detecting Out-of-distribution Samples via Variational Auto-encoder with Reliable Uncertainty Estimation
Xuming Ran
Mingkun Xu
Lingrui Mei
Qi Xu
Quanying Liu
OODD
UQCV
42
50
0
16 Jul 2020
Density of States Estimation for Out-of-Distribution Detection
Density of States Estimation for Out-of-Distribution Detection
Warren Morningstar
Cusuh Ham
Andrew Gallagher
Balaji Lakshminarayanan
Alexander A. Alemi
Joshua V. Dillon
OODD
22
83
0
16 Jun 2020
Probabilistic Autoencoder
Probabilistic Autoencoder
Vanessa Böhm
U. Seljak
UQCV
BDL
DRL
24
32
0
09 Jun 2020
Mutual Information Gradient Estimation for Representation Learning
Mutual Information Gradient Estimation for Representation Learning
Liangjiang Wen
Yiji Zhou
Lirong He
Mingyuan Zhou
Zenglin Xu
DRL
SSL
33
27
0
03 May 2020
The Conditional Entropy Bottleneck
The Conditional Entropy Bottleneck
Ian S. Fischer
OOD
27
115
0
13 Feb 2020
Likelihood Ratios for Out-of-Distribution Detection
Likelihood Ratios for Out-of-Distribution Detection
Jie Jessie Ren
Peter J. Liu
Emily Fertig
Jasper Snoek
Ryan Poplin
M. DePristo
Joshua V. Dillon
Balaji Lakshminarayanan
OODD
50
716
0
07 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
29
1,658
0
06 Jun 2019
Minimal Achievable Sufficient Statistic Learning
Minimal Achievable Sufficient Statistic Learning
Milan Cvitkovic
Günther Koliander
25
12
0
19 May 2019
Failing Loudly: An Empirical Study of Methods for Detecting Dataset
  Shift
Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift
Stephan Rabanser
Stephan Günnemann
Zachary Chase Lipton
33
359
0
29 Oct 2018
WAIC, but Why? Generative Ensembles for Robust Anomaly Detection
WAIC, but Why? Generative Ensembles for Robust Anomaly Detection
Hyun-Jae Choi
Eric Jang
Alexander A. Alemi
OODD
20
82
0
02 Oct 2018
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
244
349
0
14 Jun 2018
Learning Representations for Neural Network-Based Classification Using
  the Information Bottleneck Principle
Learning Representations for Neural Network-Based Classification Using the Information Bottleneck Principle
Rana Ali Amjad
Bernhard C. Geiger
35
195
0
27 Feb 2018
Nonlinear Information Bottleneck
Nonlinear Information Bottleneck
Artemy Kolchinsky
Brendan D. Tracey
David Wolpert
17
153
0
06 May 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
1