ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.10045
  4. Cited By
Deictic Image Maps: An Abstraction For Learning Pose Invariant
  Manipulation Policies

Deictic Image Maps: An Abstraction For Learning Pose Invariant Manipulation Policies

26 June 2018
Robert Platt
Colin Kohler
Marcus Gualtieri
ArXivPDFHTML

Papers citing "Deictic Image Maps: An Abstraction For Learning Pose Invariant Manipulation Policies"

5 / 5 papers shown
Title
Learning Skills from Demonstrations: A Trend from Motion Primitives to
  Experience Abstraction
Learning Skills from Demonstrations: A Trend from Motion Primitives to Experience Abstraction
Mehrdad Tavassoli
S. Katyara
Maria Pozzi
Nikhil Deshpande
D. Caldwell
D. Prattichizzo
35
11
0
14 Oct 2022
Equivariant $Q$ Learning in Spatial Action Spaces
Equivariant QQQ Learning in Spatial Action Spaces
Dian Wang
Robin Walters
Xu Zhu
Robert Platt
27
73
0
28 Oct 2021
Multi-Task Learning with Sequence-Conditioned Transporter Networks
Multi-Task Learning with Sequence-Conditioned Transporter Networks
M. H. Lim
Andy Zeng
Brian Ichter
Maryam Bandari
Erwin Coumans
Claire Tomlin
S. Schaal
Aleksandra Faust
39
14
0
15 Sep 2021
A Review of Robot Learning for Manipulation: Challenges,
  Representations, and Algorithms
A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms
Oliver Kroemer
S. Niekum
George Konidaris
41
356
0
06 Jul 2019
Learning Manipulation Skills Via Hierarchical Spatial Attention
Learning Manipulation Skills Via Hierarchical Spatial Attention
Marcus Gualtieri
Robert Platt
33
13
0
19 Apr 2019
1