Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.08867
Cited By
xGEMs: Generating Examplars to Explain Black-Box Models
22 June 2018
Shalmali Joshi
Oluwasanmi Koyejo
Been Kim
Joydeep Ghosh
MLAU
Re-assign community
ArXiv
PDF
HTML
Papers citing
"xGEMs: Generating Examplars to Explain Black-Box Models"
29 / 29 papers shown
Title
Identifying Spurious Correlations using Counterfactual Alignment
Joseph Paul Cohen
Louis Blankemeier
Akshay S. Chaudhari
CML
84
1
0
01 Dec 2023
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
380
10,591
0
17 Feb 2020
Local Explanation Methods for Deep Neural Networks Lack Sensitivity to Parameter Values
Julius Adebayo
Justin Gilmer
Ian Goodfellow
Been Kim
FAtt
AAML
49
128
0
08 Oct 2018
ConvNets and ImageNet Beyond Accuracy: Understanding Mistakes and Uncovering Biases
Pierre Stock
Moustapha Cissé
FaML
66
46
0
30 Nov 2017
The (Un)reliability of saliency methods
Pieter-Jan Kindermans
Sara Hooker
Julius Adebayo
Maximilian Alber
Kristof T. Schütt
Sven Dähne
D. Erhan
Been Kim
FAtt
XAI
93
685
0
02 Nov 2017
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
239
4,259
0
22 Jun 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
291
5,825
0
14 Jun 2017
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
201
2,221
0
12 Jun 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
187
2,882
0
14 Mar 2017
Streaming Weak Submodularity: Interpreting Neural Networks on the Fly
Ethan R. Elenberg
A. Dimakis
Moran Feldman
Amin Karbasi
42
89
0
08 Mar 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
177
5,986
0
04 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
388
3,785
0
28 Feb 2017
Supervised topic models for clinical interpretability
M. C. Hughes
Huseyin Melih Elibol
T. McCoy
R. Perlis
Finale Doshi-Velez
43
9
0
06 Dec 2016
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
220
4,305
0
07 Oct 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
282
19,981
0
07 Oct 2016
Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings
Tolga Bolukbasi
Kai-Wei Chang
James Zou
Venkatesh Saligrama
Adam Kalai
CVBM
FaML
103
3,133
0
21 Jul 2016
Tutorial on Variational Autoencoders
Carl Doersch
BDL
DRL
96
1,743
0
19 Jun 2016
Early Visual Concept Learning with Unsupervised Deep Learning
I. Higgins
Loic Matthey
Xavier Glorot
Arka Pal
Benigno Uria
Charles Blundell
S. Mohamed
Alexander Lerchner
CoGe
OCL
DRL
61
173
0
17 Jun 2016
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
178
3,690
0
10 Jun 2016
Adversarially Learned Inference
Vincent Dumoulin
Ishmael Belghazi
Ben Poole
Olivier Mastropietro
Alex Lamb
Martín Arjovsky
Aaron Courville
GAN
72
1,314
0
02 Jun 2016
Asynchrony begets Momentum, with an Application to Deep Learning
Jeff Donahue
Philipp Krahenbuhl
Stefan Hadjis
Christopher Ré
92
141
0
31 May 2016
Not Just a Black Box: Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Shcherbina
A. Kundaje
FAtt
80
788
0
05 May 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,954
0
16 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,814
0
10 Dec 2015
Visualizing and Understanding Recurrent Networks
A. Karpathy
Justin Johnson
Li Fei-Fei
HAI
116
1,101
0
05 Jun 2015
Visualizing and Understanding Neural Models in NLP
Jiwei Li
Xinlei Chen
Eduard H. Hovy
Dan Jurafsky
MILM
FAtt
75
706
0
02 Jun 2015
Monotonic Calibrated Interpolated Look-Up Tables
Maya R. Gupta
Andrew Cotter
Jan Pfeifer
Konstantin Voevodski
K. Canini
Alexander Mangylov
Wojtek Moczydlowski
A. V. Esbroeck
189
128
0
23 May 2015
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
239
8,401
0
28 Nov 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
307
7,289
0
20 Dec 2013
1