ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.08838
  4. Cited By
Bayesian Optimization of Combinatorial Structures

Bayesian Optimization of Combinatorial Structures

22 June 2018
Ricardo Baptista
Matthias Poloczek
ArXivPDFHTML

Papers citing "Bayesian Optimization of Combinatorial Structures"

23 / 73 papers shown
Title
Bayesian Variational Optimization for Combinatorial Spaces
Bayesian Variational Optimization for Combinatorial Spaces
Tony C Wu
Daniel Flam-Shepherd
Alán Aspuru-Guzik
BDL
17
4
0
03 Nov 2020
Information-Theoretic Multi-Objective Bayesian Optimization with
  Continuous Approximations
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations
Syrine Belakaria
Aryan Deshwal
J. Doppa
20
7
0
12 Sep 2020
Max-value Entropy Search for Multi-Objective Bayesian Optimization with
  Constraints
Max-value Entropy Search for Multi-Objective Bayesian Optimization with Constraints
Syrine Belakaria
Aryan Deshwal
J. Doppa
14
131
0
01 Sep 2020
Surrogate NAS Benchmarks: Going Beyond the Limited Search Spaces of
  Tabular NAS Benchmarks
Surrogate NAS Benchmarks: Going Beyond the Limited Search Spaces of Tabular NAS Benchmarks
Arber Zela
Julien N. Siems
Lucas Zimmer
Jovita Lukasik
M. Keuper
Frank Hutter
36
75
0
22 Aug 2020
Scalable Combinatorial Bayesian Optimization with Tractable Statistical
  models
Scalable Combinatorial Bayesian Optimization with Tractable Statistical models
Aryan Deshwal
Syrine Belakaria
J. Doppa
6
13
0
18 Aug 2020
Uncertainty aware Search Framework for Multi-Objective Bayesian
  Optimization with Constraints
Uncertainty aware Search Framework for Multi-Objective Bayesian Optimization with Constraints
Syrine Belakaria
Aryan Deshwal
J. Doppa
11
6
0
16 Aug 2020
Sample-Efficient Optimization in the Latent Space of Deep Generative
  Models via Weighted Retraining
Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining
Austin Tripp
Erik A. Daxberger
José Miguel Hernández-Lobato
MedIm
24
135
0
16 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
8
34
0
09 Jun 2020
Black-box Mixed-Variable Optimisation using a Surrogate Model that
  Satisfies Integer Constraints
Black-box Mixed-Variable Optimisation using a Surrogate Model that Satisfies Integer Constraints
Laurens Bliek
Arthur Guijt
S. Verwer
Mathijs de Weerdt
8
19
0
08 Jun 2020
Combinatorial Black-Box Optimization with Expert Advice
Combinatorial Black-Box Optimization with Expert Advice
Hamid Dadkhahi
Karthikeyan Shanmugam
Jesus Rios
Payel Das
Samuel C. Hoffman
T. Loeffler
S. Sankaranarayanan
17
16
0
06 Jun 2020
Combinatorial 3D Shape Generation via Sequential Assembly
Combinatorial 3D Shape Generation via Sequential Assembly
Jungtaek Kim
H. Chung
Jinhwi Lee
Minsu Cho
Jaesik Park
13
21
0
16 Apr 2020
Weighting NTBEA for Game AI Optimisation
Weighting NTBEA for Game AI Optimisation
J. Goodman
Simon Lucas
14
2
0
23 Mar 2020
Scalable Constrained Bayesian Optimization
Scalable Constrained Bayesian Optimization
David Eriksson
Matthias Poloczek
33
95
0
20 Feb 2020
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution
  Detection
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection
Erik A. Daxberger
José Miguel Hernández-Lobato
UQCV
18
63
0
11 Dec 2019
Black-box Combinatorial Optimization using Models with Integer-valued
  Minima
Black-box Combinatorial Optimization using Models with Integer-valued Minima
Laurens Bliek
S. Verwer
Mathijs de Weerdt
8
18
0
20 Nov 2019
Achieving Robustness to Aleatoric Uncertainty with Heteroscedastic
  Bayesian Optimisation
Achieving Robustness to Aleatoric Uncertainty with Heteroscedastic Bayesian Optimisation
Ryan-Rhys Griffiths
Alexander A. Aldrick
Miguel García-Ortegón
Vidhi R. Lalchand
A. Lee
31
35
0
17 Oct 2019
Kernels over Sets of Finite Sets using RKHS Embeddings, with Application
  to Bayesian (Combinatorial) Optimization
Kernels over Sets of Finite Sets using RKHS Embeddings, with Application to Bayesian (Combinatorial) Optimization
Poompol Buathong
D. Ginsbourger
Tipaluck Krityakierne
BDL
29
22
0
09 Oct 2019
Scalable Global Optimization via Local Bayesian Optimization
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
31
449
0
03 Oct 2019
A Hierarchical Two-tier Approach to Hyper-parameter Optimization in
  Reinforcement Learning
A Hierarchical Two-tier Approach to Hyper-parameter Optimization in Reinforcement Learning
Juan Cruz Barsce
J. Palombarini
E. Martínez
OffRL
11
0
0
18 Sep 2019
Ludwig: a type-based declarative deep learning toolbox
Ludwig: a type-based declarative deep learning toolbox
Piero Molino
Yaroslav Dudin
Sai Sumanth Miryala
VLM
11
62
0
17 Sep 2019
High Dimensional Bayesian Optimization via Supervised Dimension
  Reduction
High Dimensional Bayesian Optimization via Supervised Dimension Reduction
Miao Zhang
Huiqi Li
Steven W. Su
6
44
0
21 Jul 2019
Mixed-Variable Bayesian Optimization
Mixed-Variable Bayesian Optimization
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
16
51
0
02 Jul 2019
Combinatorial Bayesian Optimization using the Graph Cartesian Product
Combinatorial Bayesian Optimization using the Graph Cartesian Product
Changyong Oh
Jakub M. Tomczak
E. Gavves
Max Welling
14
105
0
01 Feb 2019
Previous
12