ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.08141
  4. Cited By
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal
  Transport and Diffusions

Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions

21 June 2018
Antoine Liutkus
Umut Simsekli
Szymon Majewski
Alain Durmus
Fabian-Robert Stöter
    DiffM
ArXivPDFHTML

Papers citing "Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions"

27 / 27 papers shown
Title
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Jialong Jiang
Wenkang Hu
Jian Huang
Yuling Jiao
Xu Liu
DiffM
50
0
0
08 May 2025
DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows
DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows
Jonathan Geuter
Clément Bonet
Anna Korba
David Alvarez-Melis
56
0
0
03 Mar 2025
AWT: Transferring Vision-Language Models via Augmentation, Weighting,
  and Transportation
AWT: Transferring Vision-Language Models via Augmentation, Weighting, and Transportation
Yuhan Zhu
Yuyang Ji
Zhiyu Zhao
Gangshan Wu
Limin Wang
VLM
39
7
0
05 Jul 2024
Efficient Prior Calibration From Indirect Data
Efficient Prior Calibration From Indirect Data
O. Deniz Akyildiz
M. Girolami
Andrew M. Stuart
A. Vadeboncoeur
38
1
0
28 May 2024
WeiPer: OOD Detection using Weight Perturbations of Class Projections
WeiPer: OOD Detection using Weight Perturbations of Class Projections
Maximilian Granz
Manuel Heurich
Tim Landgraf
OODD
39
1
0
27 May 2024
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Ilana Sebag
Muni Sreenivas Pydi
Jean-Yves Franceschi
Alain Rakotomamonjy
Mike Gartrell
Jamal Atif
Alexandre Allauzen
24
2
0
13 Dec 2023
Partial Transport for Point-Cloud Registration
Partial Transport for Point-Cloud Registration
Yikun Bai
Huy Tran
S. Damelin
Soheil Kolouri
3DPC
OT
32
1
0
27 Sep 2023
Refining 6-DoF Grasps with Context-Specific Classifiers
Refining 6-DoF Grasps with Context-Specific Classifiers
Tasbolat Taunyazov
Heng Zhang
John Patrick Eala
Na Zhao
Harold Soh
25
2
0
14 Aug 2023
Measure transfer via stochastic slicing and matching
Measure transfer via stochastic slicing and matching
Shiying Li
Caroline Moosmueller
22
3
0
11 Jul 2023
Energy-Based Sliced Wasserstein Distance
Energy-Based Sliced Wasserstein Distance
Khai Nguyen
Nhat Ho
23
21
0
26 Apr 2023
Hyperbolic Sliced-Wasserstein via Geodesic and Horospherical Projections
Hyperbolic Sliced-Wasserstein via Geodesic and Horospherical Projections
Clément Bonet
Laetitia Chapel
Lucas Drumetz
Nicolas Courty
11
14
0
18 Nov 2022
Block-wise Training of Residual Networks via the Minimizing Movement
  Scheme
Block-wise Training of Residual Networks via the Minimizing Movement Scheme
Skander Karkar
Ibrahim Ayed
Emmanuel de Bézenac
Patrick Gallinari
27
1
0
03 Oct 2022
Hierarchical Sliced Wasserstein Distance
Hierarchical Sliced Wasserstein Distance
Khai Nguyen
Tongzheng Ren
Huy Nguyen
Litu Rout
T. Nguyen
Nhat Ho
26
19
0
27 Sep 2022
On making optimal transport robust to all outliers
On making optimal transport robust to all outliers
Kilian Fatras
OT
19
0
0
23 Jun 2022
Revisiting Sliced Wasserstein on Images: From Vectorization to
  Convolution
Revisiting Sliced Wasserstein on Images: From Vectorization to Convolution
Khai Nguyen
Nhat Ho
18
25
0
04 Apr 2022
Efficient Gradient Flows in Sliced-Wasserstein Space
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
29
21
0
21 Oct 2021
Entropic Gromov-Wasserstein between Gaussian Distributions
Entropic Gromov-Wasserstein between Gaussian Distributions
Khang Le
Dung D. Le
Huy Nguyen
Dat Do
Tung Pham
Nhat Ho
OT
15
18
0
24 Aug 2021
Fast Approximation of the Sliced-Wasserstein Distance Using
  Concentration of Random Projections
Fast Approximation of the Sliced-Wasserstein Distance Using Concentration of Random Projections
Kimia Nadjahi
Alain Durmus
Pierre E. Jacob
Roland Badeau
Umut Simsekli
18
36
0
29 Jun 2021
Unbalanced minibatch Optimal Transport; applications to Domain
  Adaptation
Unbalanced minibatch Optimal Transport; applications to Domain Adaptation
Kilian Fatras
Thibault Séjourné
Nicolas Courty
Rémi Flamary
OT
21
146
0
05 Mar 2021
Stein Variational Gradient Descent: many-particle and long-time
  asymptotics
Stein Variational Gradient Descent: many-particle and long-time asymptotics
Nikolas Nusken
D. M. Renger
24
22
0
25 Feb 2021
Entropy Partial Transport with Tree Metrics: Theory and Practice
Entropy Partial Transport with Tree Metrics: Theory and Practice
Tam Le
Truyen V. Nguyen
OT
26
15
0
24 Jan 2021
Minibatch optimal transport distances; analysis and applications
Minibatch optimal transport distances; analysis and applications
Kilian Fatras
Younes Zine
Szymon Majewski
Rémi Flamary
Rémi Gribonval
Nicolas Courty
OT
63
53
0
05 Jan 2021
Statistical and Topological Properties of Sliced Probability Divergences
Statistical and Topological Properties of Sliced Probability Divergences
Kimia Nadjahi
Alain Durmus
Lénaïc Chizat
Soheil Kolouri
Shahin Shahrampour
Umut Simsekli
21
80
0
12 Mar 2020
Approximate Bayesian Computation with the Sliced-Wasserstein Distance
Approximate Bayesian Computation with the Sliced-Wasserstein Distance
Kimia Nadjahi
Valentin De Bortoli
Alain Durmus
Roland Badeau
Umut Simsekli
11
25
0
28 Oct 2019
Learning a Domain-Invariant Embedding for Unsupervised Domain Adaptation
  Using Class-Conditioned Distribution Alignment
Learning a Domain-Invariant Embedding for Unsupervised Domain Adaptation Using Class-Conditioned Distribution Alignment
Alex Gabourie
Mohammad Rostami
Phillip E. Pope
Soheil Kolouri
Kyungnam Kim
OOD
6
22
0
04 Jul 2019
Maximum Mean Discrepancy Gradient Flow
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
Anna Korba
Adil Salim
A. Gretton
24
158
0
11 Jun 2019
Stochastic Particle-Optimization Sampling and the Non-Asymptotic
  Convergence Theory
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
12
46
0
05 Sep 2018
1