Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.07572
Cited By
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
20 June 2018
Arthur Jacot
Franck Gabriel
Clément Hongler
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Tangent Kernel: Convergence and Generalization in Neural Networks"
50 / 2,160 papers shown
Title
On Learning Over-parameterized Neural Networks: A Functional Approximation Perspective
Lili Su
Pengkun Yang
MLT
27
53
0
26 May 2019
What Can ResNet Learn Efficiently, Going Beyond Kernels?
Zeyuan Allen-Zhu
Yuanzhi Li
24
183
0
24 May 2019
Explicitizing an Implicit Bias of the Frequency Principle in Two-layer Neural Networks
Yaoyu Zhang
Zhi-Qin John Xu
Tao Luo
Zheng Ma
MLT
AI4CE
36
38
0
24 May 2019
Neural Temporal-Difference and Q-Learning Provably Converge to Global Optima
Qi Cai
Zhuoran Yang
Jason D. Lee
Zhaoran Wang
36
29
0
24 May 2019
Gradient Descent can Learn Less Over-parameterized Two-layer Neural Networks on Classification Problems
Atsushi Nitanda
Geoffrey Chinot
Taiji Suzuki
MLT
16
33
0
23 May 2019
A type of generalization error induced by initialization in deep neural networks
Yaoyu Zhang
Zhi-Qin John Xu
Tao Luo
Zheng Ma
9
50
0
19 May 2019
An Information Theoretic Interpretation to Deep Neural Networks
Shao-Lun Huang
Xiangxiang Xu
Lizhong Zheng
G. Wornell
FAtt
22
41
0
16 May 2019
Do Kernel and Neural Embeddings Help in Training and Generalization?
Arman Rahbar
Emilio Jorge
Devdatt Dubhashi
Morteza Haghir Chehreghani
MLT
25
0
0
13 May 2019
The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study
Daniel S. Park
Jascha Narain Sohl-Dickstein
Quoc V. Le
Samuel L. Smith
27
57
0
09 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
25
109
0
09 May 2019
Similarity of Neural Network Representations Revisited
Simon Kornblith
Mohammad Norouzi
Honglak Lee
Geoffrey E. Hinton
70
1,361
0
01 May 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
18
241
0
27 Apr 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
44
905
0
26 Apr 2019
Implicit regularization for deep neural networks driven by an Ornstein-Uhlenbeck like process
Guy Blanc
Neha Gupta
Gregory Valiant
Paul Valiant
24
144
0
19 Apr 2019
The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent
Karthik A. Sankararaman
Soham De
Zheng Xu
Yifan Jiang
Tom Goldstein
ODL
27
103
0
15 Apr 2019
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDL
VLM
38
136
0
10 Apr 2019
Analysis of the Gradient Descent Algorithm for a Deep Neural Network Model with Skip-connections
E. Weinan
Chao Ma
Qingcan Wang
Lei Wu
MLT
37
22
0
10 Apr 2019
A Comparative Analysis of the Optimization and Generalization Property of Two-layer Neural Network and Random Feature Models Under Gradient Descent Dynamics
E. Weinan
Chao Ma
Lei Wu
MLT
19
121
0
08 Apr 2019
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
19
101
0
02 Apr 2019
On the Power and Limitations of Random Features for Understanding Neural Networks
Gilad Yehudai
Ohad Shamir
MLT
28
181
0
01 Apr 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
47
351
0
27 Mar 2019
General Probabilistic Surface Optimization and Log Density Estimation
Dmitry Kopitkov
Vadim Indelman
8
1
0
25 Mar 2019
Towards Characterizing Divergence in Deep Q-Learning
Joshua Achiam
Ethan Knight
Pieter Abbeel
27
96
0
21 Mar 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
R. Tibshirani
31
728
0
19 Mar 2019
Stabilize Deep ResNet with A Sharp Scaling Factor
τ
τ
τ
Huishuai Zhang
Da Yu
Mingyang Yi
Wei Chen
Tie-Yan Liu
32
8
0
17 Mar 2019
Mean Field Analysis of Deep Neural Networks
Justin A. Sirignano
K. Spiliopoulos
22
82
0
11 Mar 2019
Function Space Particle Optimization for Bayesian Neural Networks
Ziyu Wang
Tongzheng Ren
Jun Zhu
Bo Zhang
BDL
28
63
0
26 Feb 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
52
1,077
0
18 Feb 2019
Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
33
276
0
16 Feb 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
11
284
0
13 Feb 2019
Uniform convergence may be unable to explain generalization in deep learning
Vaishnavh Nagarajan
J. Zico Kolter
MoMe
AI4CE
17
309
0
13 Feb 2019
Mean Field Limit of the Learning Dynamics of Multilayer Neural Networks
Phan-Minh Nguyen
AI4CE
24
72
0
07 Feb 2019
Are All Layers Created Equal?
Chiyuan Zhang
Samy Bengio
Y. Singer
20
140
0
06 Feb 2019
Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks
Yuan Cao
Quanquan Gu
ODL
MLT
AI4CE
25
155
0
04 Feb 2019
Stiffness: A New Perspective on Generalization in Neural Networks
Stanislav Fort
Pawel Krzysztof Nowak
Stanislaw Jastrzebski
S. Narayanan
21
94
0
28 Jan 2019
Dynamical Isometry and a Mean Field Theory of LSTMs and GRUs
D. Gilboa
B. Chang
Minmin Chen
Greg Yang
S. Schoenholz
Ed H. Chi
Jeffrey Pennington
34
40
0
25 Jan 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
55
961
0
24 Jan 2019
Training Neural Networks as Learning Data-adaptive Kernels: Provable Representation and Approximation Benefits
Xialiang Dou
Tengyuan Liang
MLT
29
43
0
21 Jan 2019
A Theoretical Analysis of Deep Q-Learning
Jianqing Fan
Zhuoran Yang
Yuchen Xie
Zhaoran Wang
23
595
0
01 Jan 2019
On the Benefit of Width for Neural Networks: Disappearance of Bad Basins
Dawei Li
Tian Ding
Ruoyu Sun
29
38
0
28 Dec 2018
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
46
807
0
19 Dec 2018
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
32
765
0
12 Nov 2018
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
51
1,448
0
09 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
J. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
44
1,125
0
09 Nov 2018
On the Convergence Rate of Training Recurrent Neural Networks
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
29
191
0
29 Oct 2018
A jamming transition from under- to over-parametrization affects loss landscape and generalization
S. Spigler
Mario Geiger
Stéphane dÁscoli
Levent Sagun
Giulio Biroli
M. Wyart
27
151
0
22 Oct 2018
Exchangeability and Kernel Invariance in Trained MLPs
Russell Tsuchida
Fred Roosta
M. Gallagher
14
3
0
19 Oct 2018
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
J. Lee
Qiang Liu
Tengyu Ma
26
245
0
12 Oct 2018
Information Geometry of Orthogonal Initializations and Training
Piotr A. Sokól
Il-Su Park
AI4CE
80
16
0
09 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
56
1,252
0
04 Oct 2018
Previous
1
2
3
...
42
43
44
Next