Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.07572
Cited By
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
20 June 2018
Arthur Jacot
Franck Gabriel
Clément Hongler
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Tangent Kernel: Convergence and Generalization in Neural Networks"
50 / 2,163 papers shown
Title
Mildly Overparametrized Neural Nets can Memorize Training Data Efficiently
Rong Ge
Runzhe Wang
Haoyu Zhao
TDI
18
20
0
26 Sep 2019
Asymptotics of Wide Networks from Feynman Diagrams
Ethan Dyer
Guy Gur-Ari
32
114
0
25 Sep 2019
Dynamics of Deep Neural Networks and Neural Tangent Hierarchy
Jiaoyang Huang
H. Yau
30
147
0
18 Sep 2019
Finite Depth and Width Corrections to the Neural Tangent Kernel
Boris Hanin
Mihai Nica
MDE
30
149
0
13 Sep 2019
Additive function approximation in the brain
K. Harris
32
13
0
05 Sep 2019
Neural Policy Gradient Methods: Global Optimality and Rates of Convergence
Lingxiao Wang
Qi Cai
Zhuoran Yang
Zhaoran Wang
25
236
0
29 Aug 2019
Deep Learning Theory Review: An Optimal Control and Dynamical Systems Perspective
Guan-Horng Liu
Evangelos A. Theodorou
AI4CE
27
71
0
28 Aug 2019
On the Multiple Descent of Minimum-Norm Interpolants and Restricted Lower Isometry of Kernels
Tengyuan Liang
Alexander Rakhlin
Xiyu Zhai
26
29
0
27 Aug 2019
Finite size corrections for neural network Gaussian processes
J. Antognini
BDL
30
30
0
27 Aug 2019
Effect of Activation Functions on the Training of Overparametrized Neural Nets
A. Panigrahi
Abhishek Shetty
Navin Goyal
19
20
0
16 Aug 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
62
625
0
14 Aug 2019
A Fine-Grained Spectral Perspective on Neural Networks
Greg Yang
Hadi Salman
35
111
0
24 Jul 2019
Sparse Optimization on Measures with Over-parameterized Gradient Descent
Lénaïc Chizat
21
92
0
24 Jul 2019
Order and Chaos: NTK views on DNN Normalization, Checkerboard and Boundary Artifacts
Arthur Jacot
Franck Gabriel
François Ged
Clément Hongler
19
23
0
11 Jul 2019
Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic Model
Guodong Zhang
Lala Li
Zachary Nado
James Martens
Sushant Sachdeva
George E. Dahl
Christopher J. Shallue
Roger C. Grosse
28
149
0
09 Jul 2019
Scaling Limit of Neural Networks with the Xavier Initialization and Convergence to a Global Minimum
Justin A. Sirignano
K. Spiliopoulos
19
14
0
09 Jul 2019
Weight-space symmetry in deep networks gives rise to permutation saddles, connected by equal-loss valleys across the loss landscape
Johanni Brea
Berfin Simsek
Bernd Illing
W. Gerstner
23
55
0
05 Jul 2019
On Symmetry and Initialization for Neural Networks
Ido Nachum
Amir Yehudayoff
MLT
36
5
0
01 Jul 2019
Benign Overfitting in Linear Regression
Peter L. Bartlett
Philip M. Long
Gábor Lugosi
Alexander Tsigler
MLT
8
763
0
26 Jun 2019
Neural Proximal/Trust Region Policy Optimization Attains Globally Optimal Policy
Boyi Liu
Qi Cai
Zhuoran Yang
Zhaoran Wang
30
108
0
25 Jun 2019
Limitations of Lazy Training of Two-layers Neural Networks
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
24
143
0
21 Jun 2019
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
38
77
0
19 Jun 2019
Disentangling feature and lazy training in deep neural networks
Mario Geiger
S. Spigler
Arthur Jacot
M. Wyart
17
17
0
19 Jun 2019
Convergence of Adversarial Training in Overparametrized Neural Networks
Ruiqi Gao
Tianle Cai
Haochuan Li
Liwei Wang
Cho-Jui Hsieh
Jason D. Lee
AAML
18
107
0
19 Jun 2019
Gradient Dynamics of Shallow Univariate ReLU Networks
Francis Williams
Matthew Trager
Claudio Silva
Daniele Panozzo
Denis Zorin
Joan Bruna
19
79
0
18 Jun 2019
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup
Sebastian Goldt
Madhu S. Advani
Andrew M. Saxe
Florent Krzakala
Lenka Zdeborová
MLT
27
140
0
18 Jun 2019
Meta-learning Pseudo-differential Operators with Deep Neural Networks
Jordi Feliu-Fabà
Yuwei Fan
Lexing Ying
22
39
0
16 Jun 2019
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
52
324
0
13 Jun 2019
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
Jason D. Lee
Daniel Soudry
Nathan Srebro
30
353
0
13 Jun 2019
Generalization Guarantees for Neural Networks via Harnessing the Low-rank Structure of the Jacobian
Samet Oymak
Zalan Fabian
Mingchen Li
Mahdi Soltanolkotabi
MLT
21
88
0
12 Jun 2019
Learning Curves for Deep Neural Networks: A Gaussian Field Theory Perspective
Omry Cohen
Orit Malka
Zohar Ringel
AI4CE
23
21
0
12 Jun 2019
An Improved Analysis of Training Over-parameterized Deep Neural Networks
Difan Zou
Quanquan Gu
26
230
0
11 Jun 2019
Quadratic Suffices for Over-parametrization via Matrix Chernoff Bound
Zhao Song
Xin Yang
20
91
0
09 Jun 2019
The Normalization Method for Alleviating Pathological Sharpness in Wide Neural Networks
Ryo Karakida
S. Akaho
S. Amari
27
40
0
07 Jun 2019
Approximate Inference Turns Deep Networks into Gaussian Processes
Mohammad Emtiyaz Khan
Alexander Immer
Ehsan Abedi
M. Korzepa
UQCV
BDL
42
122
0
05 Jun 2019
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
37
186
0
05 Jun 2019
Deep ReLU Networks Have Surprisingly Few Activation Patterns
Boris Hanin
David Rolnick
21
221
0
03 Jun 2019
A Mean Field Theory of Quantized Deep Networks: The Quantization-Depth Trade-Off
Yaniv Blumenfeld
D. Gilboa
Daniel Soudry
MQ
15
14
0
03 Jun 2019
A mean-field limit for certain deep neural networks
Dyego Araújo
R. Oliveira
Daniel Yukimura
AI4CE
19
69
0
01 Jun 2019
Exact Convergence Rates of the Neural Tangent Kernel in the Large Depth Limit
Soufiane Hayou
Arnaud Doucet
Judith Rousseau
16
4
0
31 May 2019
What Can Neural Networks Reason About?
Keyulu Xu
Jingling Li
Mozhi Zhang
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
NAI
AI4CE
27
240
0
30 May 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
37
383
0
30 May 2019
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels
S. Du
Kangcheng Hou
Barnabás Póczós
Ruslan Salakhutdinov
Ruosong Wang
Keyulu Xu
23
271
0
30 May 2019
Norm-based generalisation bounds for multi-class convolutional neural networks
Antoine Ledent
Waleed Mustafa
Yunwen Lei
Marius Kloft
18
5
0
29 May 2019
Geometric Insights into the Convergence of Nonlinear TD Learning
David Brandfonbrener
Joan Bruna
17
15
0
29 May 2019
On the Inductive Bias of Neural Tangent Kernels
A. Bietti
Julien Mairal
28
253
0
29 May 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
21
57
0
28 May 2019
Simple and Effective Regularization Methods for Training on Noisily Labeled Data with Generalization Guarantee
Wei Hu
Zhiyuan Li
Dingli Yu
NoLa
25
12
0
27 May 2019
Infinitely deep neural networks as diffusion processes
Stefano Peluchetti
Stefano Favaro
ODL
16
31
0
27 May 2019
Scalable Training of Inference Networks for Gaussian-Process Models
Jiaxin Shi
Mohammad Emtiyaz Khan
Jun Zhu
BDL
27
18
0
27 May 2019
Previous
1
2
3
...
41
42
43
44
Next