ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.09017
19
7

Towards a Unified Evaluation of Explanation Methods without Ground Truth

20 November 2019
Hao Zhang
Jiayi Chen
Haotian Xue
Quanshi Zhang
    XAI
ArXivPDFHTML
Abstract

This paper proposes a set of criteria to evaluate the objectiveness of explanation methods of neural networks, which is crucial for the development of explainable AI, but it also presents significant challenges. The core challenge is that people usually cannot obtain ground-truth explanations of the neural network. To this end, we design four metrics to evaluate explanation results without ground-truth explanations. Our metrics can be broadly applied to nine benchmark methods of interpreting neural networks, which provides new insights of explanation methods.

View on arXiv
Comments on this paper