ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.06514
  4. Cited By
The Information Autoencoding Family: A Lagrangian Perspective on Latent
  Variable Generative Models

The Information Autoencoding Family: A Lagrangian Perspective on Latent Variable Generative Models

18 June 2018
Shengjia Zhao
Jiaming Song
Stefano Ermon
    DRL
    GAN
ArXivPDFHTML

Papers citing "The Information Autoencoding Family: A Lagrangian Perspective on Latent Variable Generative Models"

4 / 4 papers shown
Title
Information Theoretic Text-to-Image Alignment
Information Theoretic Text-to-Image Alignment
Chao Wang
Giulio Franzese
A. Finamore
Massimo Gallo
Pietro Michiardi
75
0
0
31 May 2024
Virtual Human Generative Model: Masked Modeling Approach for Learning Human Characteristics
Virtual Human Generative Model: Masked Modeling Approach for Learning Human Characteristics
Kenta Oono
Nontawat Charoenphakdee
K. Bito
Zhengyan Gao
Yoshiaki Ota
...
Kohei Hayashi
Yuki Saito
Koki Tsuda
Hiroshi Maruyama
K. Hayashi
32
1
0
19 Jun 2023
D2C: Diffusion-Denoising Models for Few-shot Conditional Generation
D2C: Diffusion-Denoising Models for Few-shot Conditional Generation
Abhishek Sinha
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
30
118
0
12 Jun 2021
Neural Joint Source-Channel Coding
Neural Joint Source-Channel Coding
Kristy Choi
Kedar Tatwawadi
Aditya Grover
Tsachy Weissman
Stefano Ermon
13
38
0
19 Nov 2018
1