ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.05490
  4. Cited By
Inference in Deep Gaussian Processes using Stochastic Gradient
  Hamiltonian Monte Carlo

Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo

14 June 2018
Marton Havasi
José Miguel Hernández-Lobato
J. J. Murillo-Fuentes
    BDL
ArXivPDFHTML

Papers citing "Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo"

14 / 14 papers shown
Title
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
71
0
0
01 Jul 2024
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
30
75
0
07 May 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
S. Sisson
11
8
0
20 Feb 2023
The Neural Process Family: Survey, Applications and Perspectives
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard E. Turner
L. Yao
BDL
73
24
0
01 Sep 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
21
0
0
27 Jun 2022
A Sparse Expansion For Deep Gaussian Processes
A Sparse Expansion For Deep Gaussian Processes
Liang Ding
Rui Tuo
Shahin Shahrampour
11
6
0
11 Dec 2021
Probabilistic Metamodels for an Efficient Characterization of Complex
  Driving Scenarios
Probabilistic Metamodels for an Efficient Characterization of Complex Driving Scenarios
Max Winkelmann
Mike Kohlhoff
H. Tadjine
Steffen Müller
21
9
0
06 Oct 2021
Deep Gaussian Processes: A Survey
Deep Gaussian Processes: A Survey
Kalvik Jakkala
AI4CE
GP
BDL
10
19
0
21 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian
  Process Perspective
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
26
24
0
11 Jun 2021
GPflux: A Library for Deep Gaussian Processes
GPflux: A Library for Deep Gaussian Processes
Vincent Dutordoir
Hugh Salimbeni
Eric Hambro
John Mcleod
Felix Leibfried
A. Artemev
Mark van der Wilk
J. Hensman
M. Deisenroth
S. T. John
GP
28
23
0
12 Apr 2021
Likelihood-Free Inference with Deep Gaussian Processes
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
20
10
0
18 Jun 2020
Implicit Posterior Variational Inference for Deep Gaussian Processes
Implicit Posterior Variational Inference for Deep Gaussian Processes
Haibin Yu
Yizhou Chen
Zhongxiang Dai
K. H. Low
Patrick Jaillet
11
42
0
26 Oct 2019
Learning GPLVM with arbitrary kernels using the unscented transformation
Learning GPLVM with arbitrary kernels using the unscented transformation
Daniel Augusto R. M. A. de Souza
Diego Mesquita
C. L. C. Mattos
Joao P. P. Gomes
13
0
0
03 Jul 2019
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
1