Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.05161
Cited By
Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate
13 June 2018
M. Belkin
Daniel J. Hsu
P. Mitra
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate"
50 / 60 papers shown
Title
Skeletonization of neuronal processes using Discrete Morse techniques from computational topology
Samik Banerjee
Caleb Stam
Daniel J. Tward
Steven Savoia
Yusu Wang
Partha P.Mitra
36
0
0
12 May 2025
Beyond Benign Overfitting in Nadaraya-Watson Interpolators
Daniel Barzilai
Guy Kornowski
Ohad Shamir
80
0
0
11 Feb 2025
On Memorization of Large Language Models in Logical Reasoning
Chulin Xie
Yangsibo Huang
Chiyuan Zhang
Da Yu
Xinyun Chen
Bill Yuchen Lin
Bo Li
Badih Ghazi
Ravi Kumar
LRM
58
24
0
30 Oct 2024
Leveraging Interpolation Models and Error Bounds for Verifiable Scientific Machine Learning
Tyler Chang
Andrew Gillette
R. Maulik
54
2
0
04 Apr 2024
Universality of max-margin classifiers
Andrea Montanari
Feng Ruan
Basil Saeed
Youngtak Sohn
31
4
0
29 Sep 2023
On the Role of Noise in the Sample Complexity of Learning Recurrent Neural Networks: Exponential Gaps for Long Sequences
A. F. Pour
H. Ashtiani
27
0
0
28 May 2023
Towards understanding neural collapse in supervised contrastive learning with the information bottleneck method
Siwei Wang
S. Palmer
35
2
0
19 May 2023
Do Neural Networks Generalize from Self-Averaging Sub-classifiers in the Same Way As Adaptive Boosting?
Michael Sun
Peter Chatain
AI4CE
29
0
0
14 Feb 2023
On the Lipschitz Constant of Deep Networks and Double Descent
Matteo Gamba
Hossein Azizpour
Mårten Björkman
33
7
0
28 Jan 2023
Improving Pre-Trained Weights Through Meta-Heuristics Fine-Tuning
Gustavo de Rosa
Mateus Roder
João Paulo Papa
C. F. G. Santos
36
2
0
19 Dec 2022
Private optimization in the interpolation regime: faster rates and hardness results
Hilal Asi
Karan N. Chadha
Gary Cheng
John C. Duchi
49
5
0
31 Oct 2022
Bridging the visual gap in VLN via semantically richer instructions
Joaquín Ossandón
Benjamín Earle
Alvaro Soto
37
0
0
27 Oct 2022
Interpolating Discriminant Functions in High-Dimensional Gaussian Latent Mixtures
Xin Bing
M. Wegkamp
21
1
0
25 Oct 2022
Bit Error and Block Error Rate Training for ML-Assisted Communication
Reinhard Wiesmayr
Gian Marti
C. Dick
Haochuan Song
Christoph Studer
38
9
0
25 Oct 2022
Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes
Liam Hodgkinson
Christopher van der Heide
Fred Roosta
Michael W. Mahoney
UQCV
20
5
0
14 Oct 2022
Deep Double Descent via Smooth Interpolation
Matteo Gamba
Erik Englesson
Mårten Björkman
Hossein Azizpour
63
11
0
21 Sep 2022
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Niladri S. Chatterji
Philip M. Long
23
8
0
19 Sep 2022
Membership Inference Attacks via Adversarial Examples
Hamid Jalalzai
Elie Kadoche
Rémi Leluc
Vincent Plassier
AAML
FedML
MIACV
45
7
0
27 Jul 2022
Benign, Tempered, or Catastrophic: A Taxonomy of Overfitting
Neil Rohit Mallinar
James B. Simon
Amirhesam Abedsoltan
Parthe Pandit
M. Belkin
Preetum Nakkiran
26
37
0
14 Jul 2022
Benefits of Additive Noise in Composing Classes with Bounded Capacity
A. F. Pour
H. Ashtiani
35
3
0
14 Jun 2022
Neural Collapse: A Review on Modelling Principles and Generalization
Vignesh Kothapalli
30
74
0
08 Jun 2022
Benefit of Interpolation in Nearest Neighbor Algorithms
Yue Xing
Qifan Song
Guang Cheng
17
28
0
23 Feb 2022
A generalization gap estimation for overparameterized models via the Langevin functional variance
Akifumi Okuno
Keisuke Yano
50
1
0
07 Dec 2021
On the Convergence of Shallow Neural Network Training with Randomly Masked Neurons
Fangshuo Liao
Anastasios Kyrillidis
51
16
0
05 Dec 2021
A manifold learning approach for gesture recognition from micro-Doppler radar measurements
Eric Mason
H. Mhaskar
A. Guo
28
2
0
04 Oct 2021
Classification and Adversarial examples in an Overparameterized Linear Model: A Signal Processing Perspective
Adhyyan Narang
Vidya Muthukumar
A. Sahai
SILM
AAML
36
1
0
27 Sep 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
38
71
0
06 Sep 2021
Pointer Value Retrieval: A new benchmark for understanding the limits of neural network generalization
Chiyuan Zhang
M. Raghu
Jon M. Kleinberg
Samy Bengio
OOD
32
30
0
27 Jul 2021
Jitter: Random Jittering Loss Function
Zhicheng Cai
Chenglei Peng
S. Du
21
3
0
25 Jun 2021
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking
Jiaxing Huang
Dayan Guan
Aoran Xiao
Shijian Lu
AAML
43
76
0
05 Jun 2021
Provable Super-Convergence with a Large Cyclical Learning Rate
Samet Oymak
35
12
0
22 Feb 2021
Learning Curve Theory
Marcus Hutter
146
59
0
08 Feb 2021
SGD Generalizes Better Than GD (And Regularization Doesn't Help)
I Zaghloul Amir
Tomer Koren
Roi Livni
29
46
0
01 Feb 2021
A Convergence Theory Towards Practical Over-parameterized Deep Neural Networks
Asaf Noy
Yi Tian Xu
Y. Aflalo
Lihi Zelnik-Manor
Rong Jin
41
3
0
12 Jan 2021
Accelerated, Optimal, and Parallel: Some Results on Model-Based Stochastic Optimization
Karan N. Chadha
Gary Cheng
John C. Duchi
57
16
0
07 Jan 2021
A Topological Filter for Learning with Label Noise
Pengxiang Wu
Songzhu Zheng
Mayank Goswami
Dimitris N. Metaxas
Chao Chen
NoLa
30
112
0
09 Dec 2020
Understanding Double Descent Requires a Fine-Grained Bias-Variance Decomposition
Ben Adlam
Jeffrey Pennington
UD
39
93
0
04 Nov 2020
The Deep Bootstrap Framework: Good Online Learners are Good Offline Generalizers
Preetum Nakkiran
Behnam Neyshabur
Hanie Sedghi
OffRL
29
11
0
16 Oct 2020
Prevalence of Neural Collapse during the terminal phase of deep learning training
Vardan Papyan
Xuemei Han
D. Donoho
35
551
0
18 Aug 2020
What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation
Vitaly Feldman
Chiyuan Zhang
TDI
46
441
0
09 Aug 2020
How benign is benign overfitting?
Amartya Sanyal
P. Dokania
Varun Kanade
Philip Torr
NoLa
AAML
23
57
0
08 Jul 2020
On the Similarity between the Laplace and Neural Tangent Kernels
Amnon Geifman
A. Yadav
Yoni Kasten
Meirav Galun
David Jacobs
Ronen Basri
23
89
0
03 Jul 2020
Spectral Bias and Task-Model Alignment Explain Generalization in Kernel Regression and Infinitely Wide Neural Networks
Abdulkadir Canatar
Blake Bordelon
Cengiz Pehlevan
27
181
0
23 Jun 2020
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
36
32
0
18 Jun 2020
Diversity sampling is an implicit regularization for kernel methods
Michaël Fanuel
J. Schreurs
Johan A. K. Suykens
21
14
0
20 Feb 2020
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
Blake Bordelon
Abdulkadir Canatar
Cengiz Pehlevan
149
201
0
07 Feb 2020
Exact expressions for double descent and implicit regularization via surrogate random design
Michal Derezinski
Feynman T. Liang
Michael W. Mahoney
27
77
0
10 Dec 2019
A Model of Double Descent for High-dimensional Binary Linear Classification
Zeyu Deng
A. Kammoun
Christos Thrampoulidis
39
145
0
13 Nov 2019
Sharper bounds for uniformly stable algorithms
Olivier Bousquet
Yegor Klochkov
Nikita Zhivotovskiy
23
120
0
17 Oct 2019
The Implicit Regularization of Ordinary Least Squares Ensembles
Daniel LeJeune
Hamid Javadi
Richard G. Baraniuk
18
43
0
10 Oct 2019
1
2
Next