ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.04994
  4. Cited By
Only Bayes should learn a manifold (on the estimation of differential
  geometric structure from data)

Only Bayes should learn a manifold (on the estimation of differential geometric structure from data)

13 June 2018
Søren Hauberg
ArXivPDFHTML

Papers citing "Only Bayes should learn a manifold (on the estimation of differential geometric structure from data)"

7 / 7 papers shown
Title
Pulling back symmetric Riemannian geometry for data analysis
Pulling back symmetric Riemannian geometry for data analysis
W. Diepeveen
29
2
0
11 Mar 2024
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
Agustinus Kristiadi
Felix Dangel
Philipp Hennig
32
11
0
14 Feb 2023
Interpolation of Missing Swaption Volatility Data using Gibbs Sampling
  on Variational Autoencoders
Interpolation of Missing Swaption Volatility Data using Gibbs Sampling on Variational Autoencoders
Ivo Richert
R. Buch
32
1
0
21 Apr 2022
Geometric instability of out of distribution data across autoencoder
  architecture
Geometric instability of out of distribution data across autoencoder architecture
S. Agarwala
Ben Dees
Corey Lowman
DRL
30
0
0
28 Jan 2022
Geometry-Aware Hamiltonian Variational Auto-Encoder
Geometry-Aware Hamiltonian Variational Auto-Encoder
Clément Chadebec
Clément Mantoux
S. Allassonnière
DRL
24
15
0
22 Oct 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDL
DRL
60
48
0
12 Feb 2020
Expected path length on random manifolds
Expected path length on random manifolds
David Eklund
Søren Hauberg
DRL
28
15
0
20 Aug 2019
1