Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.04522
Cited By
Meta-Learning for Stochastic Gradient MCMC
12 June 2018
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Meta-Learning for Stochastic Gradient MCMC"
30 / 30 papers shown
Title
Parameter Expanded Stochastic Gradient Markov Chain Monte Carlo
Hyunsu Kim
G. Nam
Chulhee Yun
Hongseok Yang
Juho Lee
BDL
UQCV
57
0
0
02 Mar 2025
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
Learning to Explore for Stochastic Gradient MCMC
Seunghyun Kim
Seohyeon Jung
Seonghyeon Kim
Juho Lee
BDL
48
1
0
17 Aug 2024
S
2
^2
2
AC: Energy-Based Reinforcement Learning with Stein Soft Actor Critic
Safa Messaoud
Billel Mokeddem
Zhenghai Xue
L. Pang
Bo An
Haipeng Chen
Sanjay Chawla
41
3
0
02 May 2024
Neural Structure Learning with Stochastic Differential Equations
Benjie Wang
Joel Jennings
Wenbo Gong
CML
AI4TS
15
3
0
06 Nov 2023
BayesDAG: Gradient-Based Posterior Inference for Causal Discovery
Yashas Annadani
Nick Pawlowski
Joel Jennings
Stefan Bauer
Cheng Zhang
Wenbo Gong
CML
BDL
15
17
0
26 Jul 2023
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
33
4
0
21 Apr 2023
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
26
60
0
17 Nov 2022
Approximate blocked Gibbs sampling for Bayesian neural networks
Theodore Papamarkou
BDL
138
2
0
24 Aug 2022
Practical tradeoffs between memory, compute, and performance in learned optimizers
Luke Metz
C. Freeman
James Harrison
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
33
32
0
22 Mar 2022
Is MC Dropout Bayesian?
Loic Le Folgoc
V. Baltatzis
S. Desai
A. Devaraj
S. Ellis
O. M. Manzanera
A. Nair
Huaqi Qiu
J. Schnabel
Ben Glocker
BDL
OOD
UQCV
22
39
0
08 Oct 2021
LSB: Local Self-Balancing MCMC in Discrete Spaces
Emanuele Sansone
7
10
0
08 Sep 2021
Structured Stochastic Gradient MCMC
Antonios Alexos
Alex Boyd
Stephan Mandt
BDL
11
12
0
19 Jul 2021
Confidence-Aware Learning for Camouflaged Object Detection
Jiawei Liu
Jing Zhang
Nick Barnes
26
13
0
22 Jun 2021
Meta-Learning an Inference Algorithm for Probabilistic Programs
Gwonsoo Che
Hongseok Yang
TPM
11
1
0
01 Mar 2021
The Benefit of the Doubt: Uncertainty Aware Sensing for Edge Computing Platforms
Lorena Qendro
Jagmohan Chauhan
Alberto Gil C. P. Ramos
Cecilia Mascolo
12
6
0
11 Feb 2021
Bayesian neural networks and dimensionality reduction
Deborshee Sen
Theodore Papamarkou
David B. Dunson
BDL
12
4
0
18 Aug 2020
Real-Time Uncertainty Estimation in Computer Vision via Uncertainty-Aware Distribution Distillation
Yichen Shen
Zhilu Zhang
M. Sabuncu
Lin Sun
UQCV
18
3
0
31 Jul 2020
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs
Meng Qu
Tianyu Gao
Louis-Pascal Xhonneux
Jian Tang
BDL
16
106
0
05 Jul 2020
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCV
BDL
22
58
0
19 Feb 2020
Inferring the Optimal Policy using Markov Chain Monte Carlo
Brandon Trabucco
A. Qu
Simon Li
Ganeshkumar Ashokavardhanan
OffRL
11
0
0
16 Nov 2019
Challenges in Markov chain Monte Carlo for Bayesian neural networks
Theodore Papamarkou
Jacob D. Hinkle
M. T. Young
D. Womble
BDL
31
50
0
15 Oct 2019
MetaMixUp: Learning Adaptive Interpolation Policy of MixUp with Meta-Learning
Zhijun Mai
Guosheng Hu
Dexiong Chen
Fumin Shen
Heng Tao Shen
13
41
0
27 Aug 2019
Confidence Calibration for Convolutional Neural Networks Using Structured Dropout
Zhilu Zhang
Adrian V. Dalca
M. Sabuncu
UQCV
BDL
6
47
0
23 Jun 2019
Efficient Evaluation-Time Uncertainty Estimation by Improved Distillation
Erik Englesson
Hossein Azizpour
UQCV
14
7
0
12 Jun 2019
Exponential Family Estimation via Adversarial Dynamics Embedding
Bo Dai
Z. Liu
H. Dai
Niao He
A. Gretton
Le Song
Dale Schuurmans
9
52
0
27 Apr 2019
Deterministic Variational Inference for Robust Bayesian Neural Networks
Anqi Wu
Sebastian Nowozin
Edward Meeds
Richard E. Turner
José Miguel Hernández-Lobato
Alexander L. Gaunt
UQCV
AAML
BDL
29
16
0
09 Oct 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
317
11,681
0
09 Mar 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
1