Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.03963
Cited By
Neural Proximal Gradient Descent for Compressive Imaging
1 June 2018
Morteza Mardani
Qingyun Sun
Shreyas S. Vasawanala
Vardan Papyan
Hatef Monajemi
John M. Pauly
D. Donoho
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Proximal Gradient Descent for Compressive Imaging"
30 / 30 papers shown
Title
Comprehensive Examination of Unrolled Networks for Solving Linear Inverse Problems
Eric Chen
Xi Chen
A. Maleki
S. Jalali
38
0
0
08 Jan 2025
Controlled Learning of Pointwise Nonlinearities in Neural-Network-Like Architectures
Michael Unser
Alexis Goujon
Stanislas Ducotterd
31
2
0
23 Aug 2024
Learning Regularization for Graph Inverse Problems
Moshe Eliasof
Md Shahriar Rahim Siddiqui
Carola-Bibiane Schönlieb
Eldad Haber
GNN
42
0
0
19 Aug 2024
Graph Neural Reaction Diffusion Models
Moshe Eliasof
Eldad Haber
Eran Treister
DiffM
AI4CE
38
2
0
16 Jun 2024
A Brief Overview of Optimization-Based Algorithms for MRI Reconstruction Using Deep Learning
Wanyu Bian
40
5
0
03 Jun 2024
A General Continuous-Time Formulation of Stochastic ADMM and Its Variants
Chris Junchi Li
37
0
0
22 Apr 2024
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
31
11
0
22 Oct 2023
Learning Trees of
ℓ
0
\ell_0
ℓ
0
-Minimization Problems
G. Welper
21
0
0
06 Feb 2023
Estimating a potential without the agony of the partition function
E. Haber
Moshe Eliasof
L. Tenorio
33
2
0
19 Aug 2022
Uncertainty Quantification for Deep Unrolling-Based Computational Imaging
Canberk Ekmekci
Müjdat Çetin
UQCV
26
12
0
02 Jul 2022
Scale-Equivariant Unrolled Neural Networks for Data-Efficient Accelerated MRI Reconstruction
Beliz Gunel
Arda Sahiner
Arjun D Desai
Akshay S. Chaudhari
S. Vasanawala
Mert Pilanci
John M. Pauly
MedIm
22
7
0
21 Apr 2022
Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging
Kerstin Hammernik
Thomas Kustner
Burhaneddin Yaman
Zhengnan Huang
Daniel Rueckert
Florian Knoll
Mehmet Akçakaya
PINN
MedIm
AI4CE
32
70
0
23 Mar 2022
Learning A 3D-CNN and Transformer Prior for Hyperspectral Image Super-Resolution
Qing Ma
Junjun Jiang
Xianming Liu
Jiayi Ma
ViT
34
53
0
27 Nov 2021
Equivariant Imaging: Learning Beyond the Range Space
Dongdong Chen
Julián Tachella
Mike E. Davies
SSL
34
95
0
26 Mar 2021
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
54
225
0
23 Mar 2021
Deep Equilibrium Architectures for Inverse Problems in Imaging
Davis Gilton
Greg Ongie
Rebecca Willett
49
181
0
16 Feb 2021
Phase Retrieval using Expectation Consistent Signal Recovery Algorithm based on Hypernetwork
Chang-Jen Wang
Chao-Kai Wen
Shang-Ho
S. Tsai
Shi Jin
Geoffrey Ye Li
27
5
0
12 Jan 2021
Model Adaptation for Inverse Problems in Imaging
Davis Gilton
Greg Ongie
Rebecca Willett
OOD
MedIm
16
48
0
30 Nov 2020
Unsupervised MRI Reconstruction with Generative Adversarial Networks
Elizabeth K. Cole
John M. Pauly
S. Vasanawala
Frank Ong
GAN
MedIm
22
50
0
29 Aug 2020
Neural Network-based Reconstruction in Compressed Sensing MRI Without Fully-sampled Training Data
Alan Q. Wang
Adrian Dalca
M. Sabuncu
31
26
0
29 Jul 2020
FLOT: Scene Flow on Point Clouds Guided by Optimal Transport
Gilles Puy
Alexandre Boulch
Renaud Marlet
3DPC
OT
137
183
0
22 Jul 2020
Compressive MR Fingerprinting reconstruction with Neural Proximal Gradient iterations
Dongdong Chen
Mike E. Davies
Mohammad Golbabaee
19
16
0
27 Jun 2020
Deep Learning Techniques for Inverse Problems in Imaging
Greg Ongie
A. Jalal
Christopher A. Metzler
Richard G. Baraniuk
A. Dimakis
Rebecca Willett
13
521
0
12 May 2020
Solving Inverse Problems with a Flow-based Noise Model
Jay Whang
Qi Lei
A. Dimakis
64
36
0
18 Mar 2020
Understanding and mitigating gradient pathologies in physics-informed neural networks
Sizhuang He
Yujun Teng
P. Perdikaris
AI4CE
PINN
35
290
0
13 Jan 2020
Differentiable Convex Optimization Layers
Akshay Agrawal
Brandon Amos
Shane T. Barratt
Stephen P. Boyd
Steven Diamond
Zico Kolter
45
639
0
28 Oct 2019
Momentum-Net: Fast and convergent iterative neural network for inverse problems
Il Yong Chun
Zhengyu Huang
Hongki Lim
Jeffrey A. Fessler
19
81
0
26 Jul 2019
Compressed Sensing: From Research to Clinical Practice with Data-Driven Learning
Joseph Y. Cheng
Feiyu Chen
Christopher M. Sandino
Morteza Mardani
John M. Pauly
S. Vasanawala
21
12
0
19 Mar 2019
Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling
Shanshan Wu
A. Dimakis
Sujay Sanghavi
Felix X. Yu
D. Holtmann-Rice
Dmitry Storcheus
Afshin Rostamizadeh
Sanjiv Kumar
SSL
23
53
0
26 Jun 2018
Compressed Sensing with Deep Image Prior and Learned Regularization
Dave Van Veen
A. Jalal
Mahdi Soltanolkotabi
Eric Price
S. Vishwanath
A. Dimakis
33
178
0
17 Jun 2018
1