ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.03891
  4. Cited By
Multi-Task Deep Networks for Depth-Based 6D Object Pose and Joint
  Registration in Crowd Scenarios

Multi-Task Deep Networks for Depth-Based 6D Object Pose and Joint Registration in Crowd Scenarios

11 June 2018
Juil Sock
K. Kim
Caner Sahin
Tae-Kyun Kim
    3DPC
ArXivPDFHTML

Papers citing "Multi-Task Deep Networks for Depth-Based 6D Object Pose and Joint Registration in Crowd Scenarios"

4 / 4 papers shown
Title
EPOS: Estimating 6D Pose of Objects with Symmetries
EPOS: Estimating 6D Pose of Objects with Symmetries
Tomás Hodan
Dániel Baráth
Jirí Matas
33
230
0
01 Apr 2020
Introducing Pose Consistency and Warp-Alignment for Self-Supervised 6D
  Object Pose Estimation in Color Images
Introducing Pose Consistency and Warp-Alignment for Self-Supervised 6D Object Pose Estimation in Color Images
Juil Sock
Guillermo Garcia-Hernando
Anil Armagan
Tae-Kyun Kim
27
5
0
27 Mar 2020
Active 6D Multi-Object Pose Estimation in Cluttered Scenarios with Deep
  Reinforcement Learning
Active 6D Multi-Object Pose Estimation in Cluttered Scenarios with Deep Reinforcement Learning
Juil Sock
Guillermo Garcia-Hernando
Tae-Kyun Kim
37
11
0
19 Oct 2019
Recovering 6D Object Pose and Predicting Next-Best-View in the Crowd
Recovering 6D Object Pose and Predicting Next-Best-View in the Crowd
Andreas Doumanoglou
R. Kouskouridas
S. Malassiotis
Tae-Kyun Kim
3DPC
127
227
0
23 Dec 2015
1