ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.03600
  4. Cited By
ML + FV = $\heartsuit$? A Survey on the Application of Machine Learning
  to Formal Verification

ML + FV = ♡\heartsuit♡? A Survey on the Application of Machine Learning to Formal Verification

10 June 2018
Moussa Amrani
L. Lucio
Adrien Bibal
ArXivPDFHTML

Papers citing "ML + FV = $\heartsuit$? A Survey on the Application of Machine Learning to Formal Verification"

19 / 19 papers shown
Title
Learning a SAT Solver from Single-Bit Supervision
Learning a SAT Solver from Single-Bit Supervision
Daniel Selsam
Matthew Lamm
Benedikt Bünz
Percy Liang
L. D. Moura
D. Dill
NAI
90
423
0
11 Feb 2018
Mastering Chess and Shogi by Self-Play with a General Reinforcement
  Learning Algorithm
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
David Silver
Thomas Hubert
Julian Schrittwieser
Ioannis Antonoglou
Matthew Lai
...
D. Kumaran
T. Graepel
Timothy Lillicrap
Karen Simonyan
Demis Hassabis
141
1,771
0
05 Dec 2017
Improve SAT-solving with Machine Learning
Improve SAT-solving with Machine Learning
Haoze Wu
43
16
0
30 Oct 2017
End-to-End Differentiable Proving
End-to-End Differentiable Proving
Tim Rocktaschel
Sebastian Riedel
NAI
94
381
0
31 May 2017
Explaining How a Deep Neural Network Trained with End-to-End Learning
  Steers a Car
Explaining How a Deep Neural Network Trained with End-to-End Learning Steers a Car
Mariusz Bojarski
Philip Yeres
A. Choromańska
K. Choromanski
Bernhard Firner
L. Jackel
Urs Muller
77
401
0
25 Apr 2017
Deep Network Guided Proof Search
Deep Network Guided Proof Search
Sarah M. Loos
G. Irving
Christian Szegedy
C. Kaliszyk
AIMat
74
159
0
24 Jan 2017
Adaptive Restart and CEGAR-based Solver for Inverting Cryptographic Hash
  Functions
Adaptive Restart and CEGAR-based Solver for Inverting Cryptographic Hash Functions
Saeed Nejati
J. Liang
Vijay Ganesh
C. Gebotys
Krzysztof Czarnecki
38
23
0
16 Aug 2016
Android Malware Detection Using Parallel Machine Learning Classifiers
Android Malware Detection Using Parallel Machine Learning Classifiers
S. Yerima
S. Sezer
Igor Muttik
43
137
0
27 Jul 2016
Android Malware Detection: an Eigenspace Analysis Approach
Android Malware Detection: an Eigenspace Analysis Approach
S. Yerima
S. Sezer
Igor Muttik
60
26
0
27 Jul 2016
DeepMath - Deep Sequence Models for Premise Selection
DeepMath - Deep Sequence Models for Premise Selection
Alexander A. Alemi
François Chollet
N. Eén
G. Irving
Christian Szegedy
Josef Urban
LRM
AIMat
57
229
0
14 Jun 2016
End to End Learning for Self-Driving Cars
End to End Learning for Self-Driving Cars
Mariusz Bojarski
D. Testa
Daniel Dworakowski
Bernhard Firner
B. Flepp
...
Urs Muller
Jiakai Zhang
Xin Zhang
Jake Zhao
Karol Zieba
SSL
100
4,167
0
25 Apr 2016
Machine Learner for Automated Reasoning 0.4 and 0.5
Machine Learner for Automated Reasoning 0.4 and 0.5
C. Kaliszyk
Josef Urban
J. Vyskočil
LRM
59
23
0
11 Feb 2014
MaLeS: A Framework for Automatic Tuning of Automated Theorem Provers
MaLeS: A Framework for Automatic Tuning of Automated Theorem Provers
D. Kühlwein
Josef Urban
69
22
0
09 Aug 2013
A Bayesian Approach to Tackling Hard Computational Problems
A Bayesian Approach to Tackling Hard Computational Problems
Eric Horvitz
Yongshao Ruan
Carla P. Gomes
Henry A. Kautz
B. Selman
D. M. Chickering
65
149
0
10 Jan 2013
Machine Learning in Proof General: Interfacing Interfaces
Machine Learning in Proof General: Interfacing Interfaces
Ekaterina Komendantskaya
Jónathan Heras
G. Grov
72
56
0
14 Dec 2012
Learning-Assisted Automated Reasoning with Flyspeck
Learning-Assisted Automated Reasoning with Flyspeck
C. Kaliszyk
Josef Urban
LRM
83
162
0
29 Nov 2012
SATzilla: Portfolio-based Algorithm Selection for SAT
SATzilla: Portfolio-based Algorithm Selection for SAT
Lin Xu
Frank Hutter
Holger H. Hoos
Kevin Leyton-Brown
98
975
0
31 Oct 2011
Premise Selection for Mathematics by Corpus Analysis and Kernel Methods
Premise Selection for Mathematics by Corpus Analysis and Kernel Methods
Jesse Alama
Tom Heskes
D. Kühlwein
Evgeni Tsivtsivadze
Josef Urban
LRM
84
147
0
17 Aug 2011
Restart Strategy Selection using Machine Learning Techniques
Restart Strategy Selection using Machine Learning Techniques
Shai Haim
T. Walsh
98
46
0
29 Jul 2009
1