Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.02920
Cited By
GAIN: Missing Data Imputation using Generative Adversarial Nets
7 June 2018
Chang Jo Kim
James Jordon
M. Schaar
GAN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"GAIN: Missing Data Imputation using Generative Adversarial Nets"
50 / 308 papers shown
Title
Time-series Imputation and Prediction with Bi-Directional Generative Adversarial Networks
Mehak Gupta
Rahmatollah Beheshti
SyDa
GAN
AI4TS
43
13
0
18 Sep 2020
PermuteAttack: Counterfactual Explanation of Machine Learning Credit Scorecards
Masoud Hashemi
Ali Fathi
AAML
107
32
0
24 Aug 2020
IGANI: Iterative Generative Adversarial Networks for Imputation with Application to Traffic Data
A. Kazemi
Hadi Meidani
53
20
0
11 Aug 2020
Concept Drift Detection: Dealing with MissingValues via Fuzzy Distance Estimations
Anjin Liu
Jie Lu
Guangquan Zhang
162
15
0
09 Aug 2020
CPAS: the UK's National Machine Learning-based Hospital Capacity Planning System for COVID-19
Zhaozhi Qian
Ahmed Alaa
Mihaela van der Schaar
81
41
0
27 Jul 2020
Instructions and Guide for Diagnostic Questions: The NeurIPS 2020 Education Challenge
Zichao Wang
A. Lamb
Evgeny S. Saveliev
Pashmina Cameron
Yordan Zaykov
...
Richard G. Baraniuk
Craig Barton
Simon L. Peyton Jones
Simon Woodhead
Cheng Zhang
AI4Ed
100
81
0
23 Jul 2020
Learning from Noisy Labels with Deep Neural Networks: A Survey
Hwanjun Song
Minseok Kim
Dongmin Park
Yooju Shin
Jae-Gil Lee
NoLa
177
1,020
0
16 Jul 2020
Projected Latent Markov Chain Monte Carlo: Conditional Sampling of Normalizing Flows
Chris Cannella
Mohammadreza Soltani
Vahid Tarokh
BDL
83
0
0
13 Jul 2020
Graph Convolutional Networks for Graphs Containing Missing Features
Hibiki Taguchi
Xin Liu
T. Murata
GNN
121
98
0
09 Jul 2020
NeuMiss networks: differentiable programming for supervised learning with missing values
Marine Le Morvan
Julie Josse
Thomas Moreau
Erwan Scornet
Gaël Varoquaux
88
8
0
03 Jul 2020
Tomographic Auto-Encoder: Unsupervised Bayesian Recovery of Corrupted Data
F. Tonolini
Pablo G. Moreno
Andreas C. Damianou
Roderick Murray-Smith
42
1
0
30 Jun 2020
Learning Disentangled Representations of Video with Missing Data
Armand Comas Massague
Fangqiu Yi
Z. Feric
Mario Sznaier
Rose Yu
DRL
63
16
0
23 Jun 2020
not-MIWAE: Deep Generative Modelling with Missing not at Random Data
Niels Bruun Ipsen
Pierre-Alexandre Mattei
J. Frellsen
DRL
74
57
0
23 Jun 2020
Missing Features Reconstruction Using a Wasserstein Generative Adversarial Imputation Network
Magda Friedjungová
Daniel Vasata
Maksym Balatsko
M. Jiřina
DiffM
SyDa
GAN
75
12
0
21 Jun 2020
Bayesian Optimization with Missing Inputs
P. Luong
Dang Nguyen
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
72
3
0
19 Jun 2020
On the Learnability of Concepts: With Applications to Comparing Word Embedding Algorithms
Adam Sutton
N. Cristianini
59
8
0
17 Jun 2020
Causal Discovery from Incomplete Data using An Encoder and Reinforcement Learning
Xiaoshui Huang
Fujin Zhu
Lois Holloway
Ali Haidar
CML
63
10
0
09 Jun 2020
Synthetic Observational Health Data with GANs: from slow adoption to a boom in medical research and ultimately digital twins?
Jeremy Georges-Filteau
Elisa Cirillo
SyDa
AI4CE
106
17
0
27 May 2020
Multiple Imputation for Biomedical Data using Monte Carlo Dropout Autoencoders
Kristian Miok
Dong Nguyen Doan
Marko Robnik-Šikonja
D. Zaharie
SyDa
74
7
0
13 May 2020
Minority Class Oversampling for Tabular Data with Deep Generative Models
R. Camino
Christian A. Hammerschmidt
R. State
72
2
0
07 May 2020
MCFlow: Monte Carlo Flow Models for Data Imputation
Trevor W. Richardson
Wencheng Wu
Lei Lin
Beilei Xu
Edgar A. Bernal
OOD
93
48
0
27 Mar 2020
Incomplete Graph Representation and Learning via Partial Graph Neural Networks
Bo Jiang
Ziyan Zhang
AI4CE
GNN
146
19
0
23 Mar 2020
Blur, Noise, and Compression Robust Generative Adversarial Networks
Takuhiro Kaneko
Tatsuya Harada
99
17
0
17 Mar 2020
Unified Multi-Domain Learning and Data Imputation using Adversarial Autoencoder
André Mendes
Julian Togelius
L. Coelho
57
2
0
15 Mar 2020
Missing Data Imputation using Optimal Transport
Boris Muzellec
Julie Josse
Claire Boyer
Marco Cuturi
OT
87
127
0
10 Feb 2020
Linear predictor on linearly-generated data with missing values: non consistency and solutions
Marine Le Morvan
Nicolas Prost
Julie Josse
Erwan Scornet
Gaël Varoquaux
92
26
0
03 Feb 2020
Causal Discovery from Incomplete Data: A Deep Learning Approach
Yuhao Wang
Vlado Menkovski
Hao Wang
Xin Du
Mykola Pechenizkiy
CML
85
35
0
15 Jan 2020
Robust Multi-Output Learning with Highly Incomplete Data via Restricted Boltzmann Machines
G. Fissore
A. Decelle
Cyril Furtlehner
Yufei Han
OOD
38
8
0
19 Dec 2019
Graph Markov Network for Traffic Forecasting with Missing Data
Zhiyong Cui
Longfei Lin
Ziyuan Pu
Yinhai Wang
AI4TS
66
97
0
10 Dec 2019
Perception-Distortion Trade-off with Restricted Boltzmann Machines
Chris Cannella
Jie Ding
Mohammadreza Soltani
Vahid Tarokh
60
0
0
21 Oct 2019
Learning Neural Causal Models from Unknown Interventions
Nan Rosemary Ke
O. Bilaniuk
Anirudh Goyal
Stefan Bauer
Hugo Larochelle
Bernhard Schölkopf
Michael C. Mozer
C. Pal
Yoshua Bengio
CML
OOD
131
170
0
02 Oct 2019
Regularising Deep Networks with Deep Generative Models
M. Willetts
A. Camuto
Stephen J. Roberts
Chris Holmes
UQCV
36
0
0
25 Sep 2019
Flow Models for Arbitrary Conditional Likelihoods
Yongqian Li
Shoaib Akbar
Junier B. Oliva
OOD
AI4CE
83
40
0
13 Sep 2019
Recovery of Future Data via Convolution Nuclear Norm Minimization
Guangcan Liu
Wayne Zhang
AI4TS
87
20
0
06 Sep 2019
GP-VAE: Deep Probabilistic Time Series Imputation
Vincent Fortuin
Dmitry Baranchuk
Gunnar Rätsch
Stephan Mandt
BDL
AI4TS
158
259
0
09 Jul 2019
Efficient data augmentation using graph imputation neural networks
Indro Spinelli
Simone Scardapane
M. Scarpiniti
A. Uncini
26
5
0
20 Jun 2019
ASAC: Active Sensing using Actor-Critic models
Chang Jo Kim
James Jordon
M. Schaar
CML
74
16
0
16 Jun 2019
Why Not to Use Zero Imputation? Correcting Sparsity Bias in Training Neural Networks
Joonyoung Yi
Juhyuk Lee
Kwang Joon Kim
Sung Ju Hwang
Eunho Yang
VLM
71
23
0
01 Jun 2019
Training Generative Adversarial Networks from Incomplete Observations using Factorised Discriminators
Daniel Stoller
Sebastian Ewert
S. Dixon
GAN
60
5
0
29 May 2019
Generative Imputation and Stochastic Prediction
Mohammad Kachuee
Kimmo Karkkainen
Orpaz Goldstein
Sajad Darabi
Majid Sarrafzadeh
104
24
0
22 May 2019
Missing Data Imputation with Adversarially-trained Graph Convolutional Networks
Indro Spinelli
Simone Scardapane
A. Uncini
MedIm
AI4CE
91
155
0
06 May 2019
Feature-Based Interpolation and Geodesics in the Latent Spaces of Generative Models
Lukasz Struski
M. Sadowski
Tomasz Danel
Jacek Tabor
Igor T. Podolak
DiffM
94
7
0
06 Apr 2019
Unsupervised Data Imputation via Variational Inference of Deep Subspaces
Adrian Dalca
John Guttag
M. Sabuncu
DRL
69
13
0
08 Mar 2019
Variational Auto-Decoder: A Method for Neural Generative Modeling from Incomplete Data
Amir Zadeh
Y. Lim
Paul Pu Liang
Louis-Philippe Morency
DRL
82
16
0
03 Mar 2019
Improving Missing Data Imputation with Deep Generative Models
R. Camino
Christian A. Hammerschmidt
R. State
SyDa
91
56
0
27 Feb 2019
HexaGAN: Generative Adversarial Nets for Real World Classification
Uiwon Hwang
Dahuin Jung
Sungroh Yoon
GAN
67
37
0
26 Feb 2019
MisGAN: Learning from Incomplete Data with Generative Adversarial Networks
Steven Cheng-Xian Li
Bo Jiang
Benjamin M. Marlin
GAN
SyDa
74
171
0
25 Feb 2019
Learning about an exponential amount of conditional distributions
Mohamed Ishmael Belghazi
Maxime Oquab
Yann LeCun
David Lopez-Paz
BDL
SSL
74
28
0
22 Feb 2019
On the consistency of supervised learning with missing values
Julie Josse
Jacob M. Chen
Nicolas Prost
Erwan Scornet
Gaël Varoquaux
154
115
0
19 Feb 2019
NAOMI: Non-Autoregressive Multiresolution Sequence Imputation
Yukai Liu
Rose Yu
Stephan Zheng
Eric Zhan
Yisong Yue
BDL
AI4TS
127
117
0
30 Jan 2019
Previous
1
2
3
4
5
6
7
Next