Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.01316
Cited By
Universal Statistics of Fisher Information in Deep Neural Networks: Mean Field Approach
4 June 2018
Ryo Karakida
S. Akaho
S. Amari
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Universal Statistics of Fisher Information in Deep Neural Networks: Mean Field Approach"
50 / 96 papers shown
Title
More Optimal Fractional-Order Stochastic Gradient Descent for Non-Convex Optimization Problems
Mohammad Partohaghighi
Roummel Marcia
YangQuan Chen
12
0
0
05 May 2025
Enhancing Multi-task Learning Capability of Medical Generalist Foundation Model via Image-centric Multi-annotation Data
Xun Zhu
Fanbin Mo
Zheng Zhang
J. Wang
Yiming Shi
Ming Wu
Chuang Zhang
Miao Li
Ji Wu
32
0
0
14 Apr 2025
Distributed Log-driven Anomaly Detection System based on Evolving Decision Making
Zhuoran Tan
Qiyuan Wang
Christos Anagnostopoulos
S. P. Parambath
Jeremy Singer
Sam Temple
43
0
0
03 Apr 2025
Effective Dimension Aware Fractional-Order Stochastic Gradient Descent for Convex Optimization Problems
Mohammad Partohaghighi
Roummel Marcia
YangQuan Chen
37
0
0
17 Mar 2025
NoT: Federated Unlearning via Weight Negation
Yasser H. Khalil
Leo Maxime Brunswic
Soufiane Lamghari
Xu Li
Mahdi Beitollahi
Xi Chen
MU
48
2
0
07 Mar 2025
Robust and Efficient Deep Hedging via Linearized Objective Neural Network
Lei Zhao
Lin Cai
69
0
0
25 Feb 2025
Fishing For Cheap And Efficient Pruners At Initialization
Ivo Gollini Navarrete
Nicolas Mauricio Cuadrado
Jose Renato Restom
Martin Takáč
Samuel Horvath
44
0
0
17 Feb 2025
Evidence on the Regularisation Properties of Maximum-Entropy Reinforcement Learning
Rémy Hosseinkhan Boucher
Onofrio Semeraro
L. Mathelin
74
0
0
28 Jan 2025
Fisher Information-based Efficient Curriculum Federated Learning with Large Language Models
Ji Liu
Jiaxiang Ren
Ruoming Jin
Zijie Zhang
Yang Zhou
P. Valduriez
Dejing Dou
FedML
31
1
0
30 Sep 2024
ClassiFIM: An Unsupervised Method To Detect Phase Transitions
Victor Kasatkin
E. Mozgunov
Nicholas Ezzell
Utkarsh Mishra
Itay Hen
Daniel Lidar
24
2
0
06 Aug 2024
Towards the Spectral bias Alleviation by Normalizations in Coordinate Networks
Zhicheng Cai
Hao Zhu
Qiu Shen
Xinran Wang
Xun Cao
41
0
0
25 Jul 2024
Task2Box: Box Embeddings for Modeling Asymmetric Task Relationships
Rangel Daroya
Aaron Sun
Subhransu Maji
27
0
0
25 Mar 2024
A Differential Geometric View and Explainability of GNN on Evolving Graphs
Yazheng Liu
Xi Zhang
Sihong Xie
19
3
0
11 Mar 2024
Tradeoffs of Diagonal Fisher Information Matrix Estimators
Alexander Soen
Ke Sun
14
1
0
08 Feb 2024
On the Parameterization of Second-Order Optimization Effective Towards the Infinite Width
Satoki Ishikawa
Ryo Karakida
24
2
0
19 Dec 2023
Temperature Balancing, Layer-wise Weight Analysis, and Neural Network Training
Yefan Zhou
Tianyu Pang
Keqin Liu
Charles H. Martin
Michael W. Mahoney
Yaoqing Yang
34
7
0
01 Dec 2023
SiGeo: Sub-One-Shot NAS via Information Theory and Geometry of Loss Landscape
Hua Zheng
Kuang-Hung Liu
Igor Fedorov
Xin Zhang
Wen-Yen Chen
Wei Wen
36
1
0
22 Nov 2023
Symmetry Induces Structure and Constraint of Learning
Liu Ziyin
26
10
0
29 Sep 2023
Deep Unsupervised Learning Using Spike-Timing-Dependent Plasticity
Sen Lu
Abhronil Sengupta
BDL
18
7
0
08 Jul 2023
AutoTransfer: AutoML with Knowledge Transfer -- An Application to Graph Neural Networks
Kaidi Cao
Jiaxuan You
Jiaju Liu
J. Leskovec
59
4
0
14 Mar 2023
Bayesian inference with finitely wide neural networks
Chi-Ken Lu
BDL
37
0
0
06 Mar 2023
Phase diagram of early training dynamics in deep neural networks: effect of the learning rate, depth, and width
Dayal Singh Kalra
M. Barkeshli
15
9
0
23 Feb 2023
Structural Neural Additive Models: Enhanced Interpretable Machine Learning
Mattias Luber
Anton Thielmann
Benjamin Säfken
27
7
0
18 Feb 2023
Generalization Ability of Wide Neural Networks on
R
\mathbb{R}
R
Jianfa Lai
Manyun Xu
Rui Chen
Qi-Rong Lin
26
21
0
12 Feb 2023
Efficient Activation Function Optimization through Surrogate Modeling
G. Bingham
Risto Miikkulainen
16
2
0
13 Jan 2023
Maximal Initial Learning Rates in Deep ReLU Networks
Gaurav M. Iyer
Boris Hanin
David Rolnick
21
9
0
14 Dec 2022
Exploring Temporal Information Dynamics in Spiking Neural Networks
Youngeun Kim
Yuhang Li
Hyoungseob Park
Yeshwanth Venkatesha
Anna Hambitzer
Priyadarshini Panda
19
32
0
26 Nov 2022
Characterizing the Spectrum of the NTK via a Power Series Expansion
Michael Murray
Hui Jin
Benjamin Bowman
Guido Montúfar
32
11
0
15 Nov 2022
FIT: A Metric for Model Sensitivity
Ben Zandonati
Adrian Alan Pol
M. Pierini
Olya Sirkin
Tal Kopetz
MQ
24
8
0
16 Oct 2022
Foundation Transformers
Hongyu Wang
Shuming Ma
Shaohan Huang
Li Dong
Wenhui Wang
...
Barun Patra
Zhun Liu
Vishrav Chaudhary
Xia Song
Furu Wei
AI4CE
27
27
0
12 Oct 2022
Component-Wise Natural Gradient Descent -- An Efficient Neural Network Optimization
Tran van Sang
Mhd Irvan
R. Yamaguchi
Toshiyuki Nakata
13
1
0
11 Oct 2022
Hyperbolic VAE via Latent Gaussian Distributions
Seunghyuk Cho
Juyong Lee
Dongwoo Kim
DRL
39
5
0
30 Sep 2022
Visualizing high-dimensional loss landscapes with Hessian directions
Lucas Böttcher
Gregory R. Wheeler
19
12
0
28 Aug 2022
Policy Gradients using Variational Quantum Circuits
André Sequeira
L. Santos
Luis Soares Barbosa
39
11
0
20 Mar 2022
Classical versus Quantum: comparing Tensor Network-based Quantum Circuits on LHC data
Jack Y. Araz
M. Spannowsky
28
14
0
21 Feb 2022
Deep Learning in Random Neural Fields: Numerical Experiments via Neural Tangent Kernel
Kaito Watanabe
Kotaro Sakamoto
Ryo Karakida
Sho Sonoda
S. Amari
OOD
19
1
0
10 Feb 2022
A Local Geometric Interpretation of Feature Extraction in Deep Feedforward Neural Networks
Md Kamran Chowdhury Shisher
Tasmeen Zaman Ornee
Yin Sun
MILM
FAtt
11
2
0
09 Feb 2022
Neural Tangent Kernel Beyond the Infinite-Width Limit: Effects of Depth and Initialization
Mariia Seleznova
Gitta Kutyniok
179
16
0
01 Feb 2022
A generalization gap estimation for overparameterized models via the Langevin functional variance
Akifumi Okuno
Keisuke Yano
38
1
0
07 Dec 2021
Approximate Spectral Decomposition of Fisher Information Matrix for Simple ReLU Networks
Yoshinari Takeishi
Masazumi Iida
J. Takeuchi
9
4
0
30 Nov 2021
Does the Data Induce Capacity Control in Deep Learning?
Rubing Yang
J. Mao
Pratik Chaudhari
25
15
0
27 Oct 2021
Feature Learning and Signal Propagation in Deep Neural Networks
Yizhang Lou
Chris Mingard
Yoonsoo Nam
Soufiane Hayou
MDE
6
17
0
22 Oct 2021
Analytic Study of Families of Spurious Minima in Two-Layer ReLU Neural Networks: A Tale of Symmetry II
Yossi Arjevani
M. Field
28
18
0
21 Jul 2021
On the Variance of the Fisher Information for Deep Learning
Alexander Soen
Ke Sun
FedML
FAtt
6
15
0
09 Jul 2021
Analytic Insights into Structure and Rank of Neural Network Hessian Maps
Sidak Pal Singh
Gregor Bachmann
Thomas Hofmann
FAtt
9
32
0
30 Jun 2021
TENGraD: Time-Efficient Natural Gradient Descent with Exact Fisher-Block Inversion
Saeed Soori
Bugra Can
Baourun Mu
Mert Gurbuzbalaban
M. Dehnavi
24
10
0
07 Jun 2021
Lower Bounds on the Generalization Error of Nonlinear Learning Models
Inbar Seroussi
Ofer Zeitouni
13
5
0
26 Mar 2021
Asymptotic Freeness of Layerwise Jacobians Caused by Invariance of Multilayer Perceptron: The Haar Orthogonal Case
B. Collins
Tomohiro Hayase
22
7
0
24 Mar 2021
Non-asymptotic approximations of neural networks by Gaussian processes
Ronen Eldan
Dan Mikulincer
T. Schramm
33
24
0
17 Feb 2021
Analyzing Finite Neural Networks: Can We Trust Neural Tangent Kernel Theory?
Mariia Seleznova
Gitta Kutyniok
AAML
16
29
0
08 Dec 2020
1
2
Next