ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.01261
  4. Cited By
Relational inductive biases, deep learning, and graph networks

Relational inductive biases, deep learning, and graph networks

4 June 2018
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
Mateusz Malinowski
Andrea Tacchetti
David Raposo
Adam Santoro
Ryan Faulkner
Çağlar Gülçehre
H. F. Song
A. J. Ballard
Justin Gilmer
George E. Dahl
Ashish Vaswani
Kelsey R. Allen
C. Nash
Victoria Langston
Chris Dyer
N. Heess
Daan Wierstra
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
    AI4CE
    NAI
ArXivPDFHTML

Papers citing "Relational inductive biases, deep learning, and graph networks"

50 / 1,581 papers shown
Title
PerCNet: Periodic Complete Representation for Crystal Graphs
PerCNet: Periodic Complete Representation for Crystal Graphs
Jiao Huang
Qianli Xing
Jinglong Ji
Bo Yang
34
1
0
03 Dec 2023
Mixed-Integer Optimisation of Graph Neural Networks for Computer-Aided
  Molecular Design
Mixed-Integer Optimisation of Graph Neural Networks for Computer-Aided Molecular Design
Tom McDonald
Calvin Tsay
Artur M. Schweidtmann
Neil Yorke-Smith
66
14
0
02 Dec 2023
HOT: Higher-Order Dynamic Graph Representation Learning with Efficient
  Transformers
HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers
Maciej Besta
Afonso Claudino Catarino
Lukas Gianinazzi
Nils Blach
Piotr Nyczyk
H. Niewiadomski
Torsten Hoefler
35
6
0
30 Nov 2023
GlycoNMR: Dataset and benchmarks for NMR chemical shift prediction of
  carbohydrates with graph neural networks
GlycoNMR: Dataset and benchmarks for NMR chemical shift prediction of carbohydrates with graph neural networks
Zizhang Chen
R. P. Badman
Lachele Foley
Robert Woods
Pengyu Hong
40
0
0
28 Nov 2023
Compositional Chain-of-Thought Prompting for Large Multimodal Models
Compositional Chain-of-Thought Prompting for Large Multimodal Models
Chancharik Mitra
Brandon Huang
Trevor Darrell
Roei Herzig
MLLM
LRM
39
80
0
27 Nov 2023
Interactive Autonomous Navigation with Internal State Inference and
  Interactivity Estimation
Interactive Autonomous Navigation with Internal State Inference and Interactivity Estimation
Jiachen Li
David Isele
Kanghoon Lee
Jinkyoo Park
K. Fujimura
Mykel J. Kochenderfer
34
7
0
27 Nov 2023
Multi-Agent Reinforcement Learning for Power Control in Wireless
  Networks via Adaptive Graphs
Multi-Agent Reinforcement Learning for Power Control in Wireless Networks via Adaptive Graphs
Lorenzo Mario Amorosa
Marco Skocaj
Roberto Verdone
Deniz Gündüz
AI4CE
21
1
0
27 Nov 2023
GGNNs : Generalizing GNNs using Residual Connections and Weighted
  Message Passing
GGNNs : Generalizing GNNs using Residual Connections and Weighted Message Passing
Abhinav Raghuvanshi
K. Malleshappa
AI4CE
GNN
29
0
0
26 Nov 2023
Everybody Needs a Little HELP: Explaining Graphs via Hierarchical
  Concepts
Everybody Needs a Little HELP: Explaining Graphs via Hierarchical Concepts
Jonas Jürß
Lucie Charlotte Magister
Pietro Barbiero
Pietro Lió
Nikola Simidjievski
44
1
0
25 Nov 2023
Variational Annealing on Graphs for Combinatorial Optimization
Variational Annealing on Graphs for Combinatorial Optimization
Sebastian Sanokowski
Wilhelm Berghammer
Sepp Hochreiter
Sebastian Lehner
56
13
0
23 Nov 2023
Learning to Optimise Wind Farms with Graph Transformers
Learning to Optimise Wind Farms with Graph Transformers
Siyi Li
Arnaud Robert
A. A. Faisal
M. Piggott
29
5
0
21 Nov 2023
Stoichiometry Representation Learning with Polymorphic Crystal
  Structures
Stoichiometry Representation Learning with Polymorphic Crystal Structures
Namkyeong Lee
Heewoong Noh
Gyoung S. Na
Tianfan Fu
Jimeng Sun
Chanyoung Park
17
0
0
17 Nov 2023
A Computationally Efficient Sparsified Online Newton Method
A Computationally Efficient Sparsified Online Newton Method
Fnu Devvrit
Sai Surya Duvvuri
Rohan Anil
Vineet Gupta
Cho-Jui Hsieh
Inderjit Dhillon
21
0
0
16 Nov 2023
Know Thy Neighbors: A Graph Based Approach for Effective Sensor-Based
  Human Activity Recognition in Smart Homes
Know Thy Neighbors: A Graph Based Approach for Effective Sensor-Based Human Activity Recognition in Smart Homes
P. Srivatsa
Thomas Plötz
GNN
30
2
0
16 Nov 2023
Three-dimensional granular flow simulation using graph neural
  network-based learned simulator
Three-dimensional granular flow simulation using graph neural network-based learned simulator
Yongjin Choi
Krishna Kumar
AI4CE
30
0
0
13 Nov 2023
Missing Value Imputation for Multi-attribute Sensor Data Streams via
  Message Propagation (Extended Version)
Missing Value Imputation for Multi-attribute Sensor Data Streams via Message Propagation (Extended Version)
Xiao Li
Huan Li
Hua Lu
Christian S. Jensen
Varun Pandey
Volker Markl
17
5
0
13 Nov 2023
Attention for Causal Relationship Discovery from Biological Neural
  Dynamics
Attention for Causal Relationship Discovery from Biological Neural Dynamics
Ziyu Lu
Anika Tabassum
Shruti R. Kulkarni
Lu Mi
J. Nathan Kutz
Eric Shea-Brown
Seung-Hwan Lim
CML
21
2
0
12 Nov 2023
Latent Task-Specific Graph Network Simulators
Latent Task-Specific Graph Network Simulators
Philipp Dahlinger
Niklas Freymuth
Michael Volpp
Tai Hoang
Gerhard Neumann
AI4CE
27
0
0
09 Nov 2023
Identifying Semantic Component for Robust Molecular Property Prediction
Identifying Semantic Component for Robust Molecular Property Prediction
Zijian Li
Zunhong Xu
Ruichu Cai
Zhenhui Yang
Yuguang Yan
Zhifeng Hao
Guan-Hong Chen
Kun Zhang
23
9
0
08 Nov 2023
GSC: Generalizable Service Coordination
GSC: Generalizable Service Coordination
Farzad Mohammadi
V. Shah-Mansouri
GNN
14
1
0
05 Nov 2023
Calibrate and Boost Logical Expressiveness of GNN Over Multi-Relational
  and Temporal Graphs
Calibrate and Boost Logical Expressiveness of GNN Over Multi-Relational and Temporal Graphs
Yeyuan Chen
Dingmin Wang
21
0
0
03 Nov 2023
Domain Adaptive Graph Neural Networks for Constraining Cosmological
  Parameters Across Multiple Data Sets
Domain Adaptive Graph Neural Networks for Constraining Cosmological Parameters Across Multiple Data Sets
Andrea Roncoli
A. Ćiprijanović
M. Voetberg
F. Villaescusa-Navarro
Brian D. Nord
AI4CE
OOD
21
5
0
02 Nov 2023
Kronecker-Factored Approximate Curvature for Modern Neural Network
  Architectures
Kronecker-Factored Approximate Curvature for Modern Neural Network Architectures
Runa Eschenhagen
Alexander Immer
Richard Turner
Frank Schneider
Philipp Hennig
53
21
0
01 Nov 2023
Leveraging Hyperbolic Embeddings for Coarse-to-Fine Robot Design
Leveraging Hyperbolic Embeddings for Coarse-to-Fine Robot Design
Heng Dong
Junyu Zhang
Chongjie Zhang
35
2
0
01 Nov 2023
Interpretable Neural PDE Solvers using Symbolic Frameworks
Interpretable Neural PDE Solvers using Symbolic Frameworks
Yolanne Yi Ran Lee
AI4CE
32
0
0
31 Oct 2023
SURF: A Generalization Benchmark for GNNs Predicting Fluid Dynamics
SURF: A Generalization Benchmark for GNNs Predicting Fluid Dynamics
Stefan Künzli
Florian Grötschla
Joël Mathys
Roger Wattenhofer
AI4CE
26
0
0
30 Oct 2023
Modeling Dynamics over Meshes with Gauge Equivariant Nonlinear Message
  Passing
Modeling Dynamics over Meshes with Gauge Equivariant Nonlinear Message Passing
Jung Yeon Park
Lawson L. S. Wong
Robin Walters
AI4CE
13
0
0
30 Oct 2023
Self Attention with Temporal Prior: Can We Learn More from Arrow of
  Time?
Self Attention with Temporal Prior: Can We Learn More from Arrow of Time?
Kyung Geun Kim
Byeong Tak Lee
AI4TS
19
0
0
29 Oct 2023
Towards Combinatorial Generalization for Catalysts: A Kohn-Sham
  Charge-Density Approach
Towards Combinatorial Generalization for Catalysts: A Kohn-Sham Charge-Density Approach
Phillip Pope
David Jacobs
24
3
0
28 Oct 2023
ViCLEVR: A Visual Reasoning Dataset and Hybrid Multimodal Fusion Model
  for Visual Question Answering in Vietnamese
ViCLEVR: A Visual Reasoning Dataset and Hybrid Multimodal Fusion Model for Visual Question Answering in Vietnamese
Khiem Vinh Tran
Hao Phu Phan
Kiet Van Nguyen
Ngan Luu-Thuy Nguyen
26
5
0
27 Oct 2023
Unleashing the potential of GNNs via Bi-directional Knowledge Transfer
Unleashing the potential of GNNs via Bi-directional Knowledge Transfer
Shuai Zheng
Zhizhe Liu
Zhenfeng Zhu
Xingxing Zhang
Jianxin Li
Yao-Min Zhao
35
0
0
26 Oct 2023
Graph Deep Learning for Time Series Forecasting
Graph Deep Learning for Time Series Forecasting
Andrea Cini
Ivan Marisca
Daniele Zambon
Cesare Alippi
AI4TS
AI4CE
24
14
0
24 Oct 2023
Density of States Prediction of Crystalline Materials via Prompt-guided
  Multi-Modal Transformer
Density of States Prediction of Crystalline Materials via Prompt-guided Multi-Modal Transformer
Namkyeong Lee
Heewoong Noh
Sungwon Kim
Dongmin Hyun
Gyoung S. Na
Chanyoung Park
21
5
0
24 Oct 2023
Graph Neural Networks and Applied Linear Algebra
Graph Neural Networks and Applied Linear Algebra
Nicholas S. Moore
Eric C. Cyr
Peter Ohm
C. Siefert
R. Tuminaro
24
4
0
21 Oct 2023
Augment with Care: Enhancing Graph Contrastive Learning with Selective
  Spectrum Perturbation
Augment with Care: Enhancing Graph Contrastive Learning with Selective Spectrum Perturbation
Kaiqi Yang
Haoyu Han
Wei-dong Jin
Hui Liu
33
3
0
20 Oct 2023
Physics-Informed Graph Convolutional Networks: Towards a generalized
  framework for complex geometries
Physics-Informed Graph Convolutional Networks: Towards a generalized framework for complex geometries
M. Chenaud
José Alves
Frédéric Magoulès
AI4CE
PINN
26
1
0
20 Oct 2023
Agri-GNN: A Novel Genotypic-Topological Graph Neural Network Framework
  Built on GraphSAGE for Optimized Yield Prediction
Agri-GNN: A Novel Genotypic-Topological Graph Neural Network Framework Built on GraphSAGE for Optimized Yield Prediction
Aditya Gupta
Asheesh Singh
27
4
0
19 Oct 2023
Building a Graph-based Deep Learning network model from captured traffic
  traces
Building a Graph-based Deep Learning network model from captured traffic traces
Carlos Güemes-Palau
Miquel Ferriol Galmés
A. Cabellos-Aparicio
Pere Barlet-Ros
GNN
26
2
0
18 Oct 2023
Towards Inferring Users' Impressions of Robot Performance in Navigation
  Scenarios
Towards Inferring Users' Impressions of Robot Performance in Navigation Scenarios
Qiping Zhang
Nathan Tsoi
Booyeon Choi
Jie Tan
Hao-Tien Lewis Chiang
Marynel Vázquez
13
0
0
17 Oct 2023
Self-supervision meets kernel graph neural models: From architecture to
  augmentations
Self-supervision meets kernel graph neural models: From architecture to augmentations
Jiawang Dan
Ruofan Wu
Yunpeng Liu
Baokun Wang
Changhua Meng
...
Tianyi Zhang
Ningtao Wang
Xin Fu
Qi Li
Weiqiang Wang
SSL
33
1
0
17 Oct 2023
Equivariant Matrix Function Neural Networks
Equivariant Matrix Function Neural Networks
Ilyes Batatia
Lars L. Schaaf
Huajie Chen
Gábor Csányi
Christoph Ortner
Felix A. Faber
32
5
0
16 Oct 2023
Does Graph Distillation See Like Vision Dataset Counterpart?
Does Graph Distillation See Like Vision Dataset Counterpart?
Beining Yang
Kai Wang
Qingyun Sun
Cheng Ji
Xingcheng Fu
Hao Tang
Yang You
Jianxin Li
DD
17
38
0
13 Oct 2023
Relational Prior Knowledge Graphs for Detection and Instance
  Segmentation
Relational Prior Knowledge Graphs for Detection and Instance Segmentation
Osman Ülger
Yu Wang
Ysbrand Galama
Sezer Karaoglu
Theo Gevers
Martin R. Oswald
26
1
0
11 Oct 2023
Neural Relational Inference with Fast Modular Meta-learning
Neural Relational Inference with Fast Modular Meta-learning
Ferran Alet
Erica Weng
Tomás Lozano Pérez
L. Kaelbling
55
55
0
10 Oct 2023
An Edge-Aware Graph Autoencoder Trained on Scale-Imbalanced Data for
  Traveling Salesman Problems
An Edge-Aware Graph Autoencoder Trained on Scale-Imbalanced Data for Traveling Salesman Problems
Shiqing Liu
Xueming Yan
Yaochu Jin
44
8
0
10 Oct 2023
Nonlinear Correct and Smooth for Semi-Supervised Learning
Nonlinear Correct and Smooth for Semi-Supervised Learning
Yuanhang Shao
Xiuwen Liu
26
1
0
09 Oct 2023
Locality-Aware Generalizable Implicit Neural Representation
Locality-Aware Generalizable Implicit Neural Representation
Doyup Lee
Chiheon Kim
Minsu Cho
Wook-Shin Han
35
12
0
09 Oct 2023
Provable Compositional Generalization for Object-Centric Learning
Provable Compositional Generalization for Object-Centric Learning
Thaddäus Wiedemer
Jack Brady
Alexander Panfilov
Attila Juhos
Matthias Bethge
Wieland Brendel
OCL
32
17
0
09 Oct 2023
Towards Foundational Models for Molecular Learning on Large-Scale
  Multi-Task Datasets
Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets
Dominique Beaini
Shenyang Huang
Joao Alex Cunha
Zhiyi Li
Gabriela Moisescu-Pareja
...
Thérence Bois
Andrew Fitzgibbon
Bla.zej Banaszewski
Chad Martin
Dominic Masters
AI4CE
28
19
0
06 Oct 2023
Fishnets: Information-Optimal, Scalable Aggregation for Sets and Graphs
Fishnets: Information-Optimal, Scalable Aggregation for Sets and Graphs
T. Lucas Makinen
Justin Alsing
Benjamin Dan Wandelt
GNN
FedML
24
3
0
05 Oct 2023
Previous
123456...303132
Next