Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.00900
Cited By
Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically Balanced
4 June 2018
S. Du
Wei Hu
J. Lee
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically Balanced"
24 / 74 papers shown
Title
On the Implicit Bias of Initialization Shape: Beyond Infinitesimal Mirror Descent
Shahar Azulay
E. Moroshko
Mor Shpigel Nacson
Blake E. Woodworth
Nathan Srebro
Amir Globerson
Daniel Soudry
AI4CE
33
73
0
19 Feb 2021
Understanding self-supervised Learning Dynamics without Contrastive Pairs
Yuandong Tian
Xinlei Chen
Surya Ganguli
SSL
138
281
0
12 Feb 2021
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics
D. Kunin
Javier Sagastuy-Breña
Surya Ganguli
Daniel L. K. Yamins
Hidenori Tanaka
107
77
0
08 Dec 2020
Neural collapse with unconstrained features
D. Mixon
Hans Parshall
Jianzong Pi
28
116
0
23 Nov 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
50
258
0
18 Nov 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
32
94
0
15 Jun 2020
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent
Tian Tong
Cong Ma
Yuejie Chi
27
115
0
18 May 2020
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Noam Razin
Nadav Cohen
24
155
0
13 May 2020
The Landscape of Matrix Factorization Revisited
Hossein Valavi
Sulin Liu
Peter J. Ramadge
17
5
0
27 Feb 2020
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss
Lénaïc Chizat
Francis R. Bach
MLT
39
328
0
11 Feb 2020
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
T. Poggio
Andrzej Banburski
Q. Liao
ODL
31
161
0
25 Aug 2019
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
52
324
0
13 Jun 2019
Implicit Regularization in Deep Matrix Factorization
Sanjeev Arora
Nadav Cohen
Wei Hu
Yuping Luo
AI4CE
38
491
0
31 May 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
44
905
0
26 Apr 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
23
94
0
24 Jan 2019
A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Sanjeev Arora
Nadav Cohen
Noah Golowich
Wei Hu
27
281
0
04 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
56
1,252
0
04 Oct 2018
Gradient descent aligns the layers of deep linear networks
Ziwei Ji
Matus Telgarsky
30
248
0
04 Oct 2018
Exponential Convergence Time of Gradient Descent for One-Dimensional Deep Linear Neural Networks
Ohad Shamir
35
45
0
23 Sep 2018
NETT: Solving Inverse Problems with Deep Neural Networks
Housen Li
Johannes Schwab
Stephan Antholzer
Markus Haltmeier
43
238
0
28 Feb 2018
G
\mathcal{G}
G
-SGD: Optimizing ReLU Neural Networks in its Positively Scale-Invariant Space
Qi Meng
Shuxin Zheng
Huishuai Zhang
Wei Chen
Zhi-Ming Ma
Tie-Yan Liu
35
38
0
11 Feb 2018
High-dimensional dynamics of generalization error in neural networks
Madhu S. Advani
Andrew M. Saxe
AI4CE
90
464
0
10 Oct 2017
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
108
1,157
0
04 Mar 2015
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
Previous
1
2