Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.00900
Cited By
Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically Balanced
4 June 2018
S. Du
Wei Hu
J. Lee
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically Balanced"
50 / 73 papers shown
Title
The late-stage training dynamics of (stochastic) subgradient descent on homogeneous neural networks
Sholom Schechtman
Nicolas Schreuder
203
0
0
08 Feb 2025
An Invitation to Neuroalgebraic Geometry
Giovanni Luca Marchetti
Vahid Shahverdi
Stefano Mereta
Matthew Trager
Kathlén Kohn
119
2
0
31 Jan 2025
Geometry and Optimization of Shallow Polynomial Networks
Yossi Arjevani
Joan Bruna
Joe Kileel
Elzbieta Polak
Matthew Trager
36
1
0
10 Jan 2025
How Feature Learning Can Improve Neural Scaling Laws
Blake Bordelon
Alexander B. Atanasov
Cengiz Pehlevan
57
12
0
26 Sep 2024
Leveraging Continuous Time to Understand Momentum When Training Diagonal Linear Networks
Hristo Papazov
Scott Pesme
Nicolas Flammarion
38
5
0
08 Mar 2024
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization
Cong Ma
Xingyu Xu
Tian Tong
Yuejie Chi
18
9
0
09 Oct 2023
How Over-Parameterization Slows Down Gradient Descent in Matrix Sensing: The Curses of Symmetry and Initialization
Nuoya Xiong
Lijun Ding
Simon S. Du
48
11
0
03 Oct 2023
Early Neuron Alignment in Two-layer ReLU Networks with Small Initialization
Hancheng Min
Enrique Mallada
René Vidal
MLT
36
19
0
24 Jul 2023
Addressing caveats of neural persistence with deep graph persistence
Leander Girrbach
Anders Christensen
Ole Winther
Zeynep Akata
A. Sophia Koepke
GNN
28
1
0
20 Jul 2023
FedBug: A Bottom-Up Gradual Unfreezing Framework for Federated Learning
Chia-Hsiang Kao
Yu-Chiang Frank Wang
FedML
26
1
0
19 Jul 2023
Improving Convergence and Generalization Using Parameter Symmetries
Bo Zhao
Robert Mansel Gower
Robin Walters
Rose Yu
MoMe
33
13
0
22 May 2023
Gradient Descent Monotonically Decreases the Sharpness of Gradient Flow Solutions in Scalar Networks and Beyond
Itai Kreisler
Mor Shpigel Nacson
Daniel Soudry
Y. Carmon
33
13
0
22 May 2023
SFP: Spurious Feature-targeted Pruning for Out-of-Distribution Generalization
Yingchun Wang
Jingcai Guo
Yi Liu
Song Guo
Weizhan Zhang
Xiangyong Cao
Qinghua Zheng
AAML
OODD
33
11
0
19 May 2023
Convergence of Alternating Gradient Descent for Matrix Factorization
R. Ward
T. Kolda
22
6
0
11 May 2023
On the Stepwise Nature of Self-Supervised Learning
James B. Simon
Maksis Knutins
Liu Ziyin
Daniel Geisz
Abraham J. Fetterman
Joshua Albrecht
SSL
37
30
0
27 Mar 2023
Active Self-Supervised Learning: A Few Low-Cost Relationships Are All You Need
Vivien A. Cabannes
Léon Bottou
Yann LeCun
Randall Balestriero
48
13
0
27 Mar 2023
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss
Pierre Bréchet
Katerina Papagiannouli
Jing An
Guido Montúfar
33
3
0
06 Mar 2023
Over-Parameterization Exponentially Slows Down Gradient Descent for Learning a Single Neuron
Weihang Xu
S. Du
37
16
0
20 Feb 2023
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
Agustinus Kristiadi
Felix Dangel
Philipp Hennig
32
11
0
14 Feb 2023
How to prepare your task head for finetuning
Yi Ren
Shangmin Guo
Wonho Bae
Danica J. Sutherland
24
14
0
11 Feb 2023
On a continuous time model of gradient descent dynamics and instability in deep learning
Mihaela Rosca
Yan Wu
Chongli Qin
Benoit Dherin
20
7
0
03 Feb 2023
Effects of Data Geometry in Early Deep Learning
Saket Tiwari
George Konidaris
79
7
0
29 Dec 2022
Infinite-width limit of deep linear neural networks
Lénaïc Chizat
Maria Colombo
Xavier Fernández-Real
Alessio Figalli
31
14
0
29 Nov 2022
Mechanistic Mode Connectivity
Ekdeep Singh Lubana
Eric J. Bigelow
Robert P. Dick
David M. Krueger
Hidenori Tanaka
32
45
0
15 Nov 2022
Symmetries, flat minima, and the conserved quantities of gradient flow
Bo Zhao
I. Ganev
Robin Walters
Rose Yu
Nima Dehmamy
47
16
0
31 Oct 2022
Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Language Models
Hong Liu
Sang Michael Xie
Zhiyuan Li
Tengyu Ma
AI4CE
40
49
0
25 Oct 2022
Surgical Fine-Tuning Improves Adaptation to Distribution Shifts
Yoonho Lee
Annie S. Chen
Fahim Tajwar
Ananya Kumar
Huaxiu Yao
Percy Liang
Chelsea Finn
OOD
61
198
0
20 Oct 2022
Wasserstein Barycenter-based Model Fusion and Linear Mode Connectivity of Neural Networks
A. K. Akash
Sixu Li
Nicolas García Trillos
34
12
0
13 Oct 2022
Boosting Adversarial Robustness From The Perspective of Effective Margin Regularization
Ziquan Liu
Antoni B. Chan
AAML
33
5
0
11 Oct 2022
Implicit Bias of Large Depth Networks: a Notion of Rank for Nonlinear Functions
Arthur Jacot
36
25
0
29 Sep 2022
Magnitude and Angle Dynamics in Training Single ReLU Neurons
Sangmin Lee
Byeongsu Sim
Jong Chul Ye
MLT
96
6
0
27 Sep 2022
A Validation Approach to Over-parameterized Matrix and Image Recovery
Lijun Ding
Zhen Qin
Liwei Jiang
Jinxin Zhou
Zhihui Zhu
48
13
0
21 Sep 2022
Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
39
19
0
15 Sep 2022
On the Implicit Bias in Deep-Learning Algorithms
Gal Vardi
FedML
AI4CE
34
72
0
26 Aug 2022
Implicit Regularization with Polynomial Growth in Deep Tensor Factorization
Kais Hariz
Hachem Kadri
Stéphane Ayache
Maher Moakher
Thierry Artières
26
2
0
18 Jul 2022
Blessing of Nonconvexity in Deep Linear Models: Depth Flattens the Optimization Landscape Around the True Solution
Jianhao Ma
S. Fattahi
44
5
0
15 Jul 2022
Symmetry Teleportation for Accelerated Optimization
B. Zhao
Nima Dehmamy
Robin Walters
Rose Yu
ODL
23
20
0
21 May 2022
Algorithmic Regularization in Model-free Overparametrized Asymmetric Matrix Factorization
Liwei Jiang
Yudong Chen
Lijun Ding
43
26
0
06 Mar 2022
Understanding Deep Contrastive Learning via Coordinate-wise Optimization
Yuandong Tian
52
34
0
29 Jan 2022
Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks
Noam Razin
Asaf Maman
Nadav Cohen
46
29
0
27 Jan 2022
Regularization by Misclassification in ReLU Neural Networks
Elisabetta Cornacchia
Jan Hązła
Ido Nachum
Amir Yehudayoff
NoLa
25
2
0
03 Nov 2021
Neural Networks as Kernel Learners: The Silent Alignment Effect
Alexander B. Atanasov
Blake Bordelon
Cengiz Pehlevan
MLT
26
75
0
29 Oct 2021
On the Regularization of Autoencoders
Harald Steck
Dario Garcia-Garcia
SSL
AI4CE
30
4
0
21 Oct 2021
Large Learning Rate Tames Homogeneity: Convergence and Balancing Effect
Yuqing Wang
Minshuo Chen
T. Zhao
Molei Tao
AI4CE
57
40
0
07 Oct 2021
On Margin Maximization in Linear and ReLU Networks
Gal Vardi
Ohad Shamir
Nathan Srebro
52
28
0
06 Oct 2021
Nonconvex Factorization and Manifold Formulations are Almost Equivalent in Low-rank Matrix Optimization
Yuetian Luo
Xudong Li
Anru R. Zhang
33
9
0
03 Aug 2021
Convergence analysis for gradient flows in the training of artificial neural networks with ReLU activation
Arnulf Jentzen
Adrian Riekert
27
23
0
09 Jul 2021
A Mechanism for Producing Aligned Latent Spaces with Autoencoders
Saachi Jain
Adityanarayanan Radhakrishnan
Caroline Uhler
24
9
0
29 Jun 2021
Global Convergence of Gradient Descent for Asymmetric Low-Rank Matrix Factorization
Tian-Chun Ye
S. Du
21
46
0
27 Jun 2021
Noisy Gradient Descent Converges to Flat Minima for Nonconvex Matrix Factorization
Tianyi Liu
Yan Li
S. Wei
Enlu Zhou
T. Zhao
21
13
0
24 Feb 2021
1
2
Next