Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.00730
Cited By
Minnorm training: an algorithm for training over-parameterized deep neural networks
3 June 2018
Yamini Bansal
Madhu S. Advani
David D. Cox
Andrew M. Saxe
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Minnorm training: an algorithm for training over-parameterized deep neural networks"
18 / 18 papers shown
Title
Convergence of Gradient Descent on Separable Data
Mor Shpigel Nacson
Jason D. Lee
Suriya Gunasekar
Pedro H. P. Savarese
Nathan Srebro
Daniel Soudry
65
168
0
05 Mar 2018
Stronger generalization bounds for deep nets via a compression approach
Sanjeev Arora
Rong Ge
Behnam Neyshabur
Yi Zhang
MLT
AI4CE
84
639
0
14 Feb 2018
To understand deep learning we need to understand kernel learning
M. Belkin
Siyuan Ma
Soumik Mandal
57
418
0
05 Feb 2018
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
139
914
0
27 Oct 2017
SGD Learns Over-parameterized Networks that Provably Generalize on Linearly Separable Data
Alon Brutzkus
Amir Globerson
Eran Malach
Shai Shalev-Shwartz
MLT
151
279
0
27 Oct 2017
High-dimensional dynamics of generalization error in neural networks
Madhu S. Advani
Andrew M. Saxe
AI4CE
128
469
0
10 Oct 2017
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks
Behnam Neyshabur
Srinadh Bhojanapalli
Nathan Srebro
80
605
0
29 Jul 2017
Exploring Generalization in Deep Learning
Behnam Neyshabur
Srinadh Bhojanapalli
David A. McAllester
Nathan Srebro
FAtt
141
1,251
0
27 Jun 2017
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
187
1,216
0
26 Jun 2017
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
106
812
0
31 Mar 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
169
2,878
0
14 Mar 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
320
4,624
0
10 Nov 2016
An Analysis of Deep Neural Network Models for Practical Applications
A. Canziani
Adam Paszke
Eugenio Culurciello
85
1,167
0
24 May 2016
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
286
18,587
0
06 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.5K
149,842
0
22 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.4K
100,213
0
04 Sep 2014
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
Andrew M. Saxe
James L. McClelland
Surya Ganguli
ODL
162
1,844
0
20 Dec 2013
Deep Learning using Linear Support Vector Machines
Yichuan Tang
95
894
0
02 Jun 2013
1