Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.12514
Cited By
Scaling provable adversarial defenses
31 May 2018
Eric Wong
Frank R. Schmidt
J. H. Metzen
J. Zico Kolter
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scaling provable adversarial defenses"
50 / 112 papers shown
Title
Towards Universal Certified Robustness with Multi-Norm Training
Enyi Jiang
Gagandeep Singh
Gagandeep Singh
AAML
62
1
0
03 Oct 2024
Certified Causal Defense with Generalizable Robustness
Yiran Qiao
Yu Yin
Chen Chen
Jing Ma
AAML
OOD
CML
63
0
0
28 Aug 2024
CTBENCH: A Library and Benchmark for Certified Training
Yuhao Mao
Stefan Balauca
Martin Vechev
OOD
47
5
0
07 Jun 2024
Certified Robust Models with Slack Control and Large Lipschitz Constants
M. Losch
David Stutz
Bernt Schiele
Mario Fritz
14
4
0
12 Sep 2023
How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses
Joana Cabral Costa
Tiago Roxo
Hugo Manuel Proença
Pedro R. M. Inácio
AAML
52
51
0
18 May 2023
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
96
33
0
29 Apr 2023
Optimization and Optimizers for Adversarial Robustness
Hengyue Liang
Buyun Liang
Le Peng
Ying Cui
Tim Mitchell
Ju Sun
AAML
28
5
0
23 Mar 2023
Boosting Verified Training for Robust Image Classifications via Abstraction
Zhaodi Zhang
Zhiyi Xue
Yang Chen
Si Liu
Yueling Zhang
Qingbin Liu
Min Zhang
51
4
0
21 Mar 2023
RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers via Randomized Deletion
Zhuoqun Huang
Neil G. Marchant
Keane Lucas
Lujo Bauer
O. Ohrimenko
Benjamin I. P. Rubinstein
AAML
32
15
0
31 Jan 2023
Improving Robust Generalization by Direct PAC-Bayesian Bound Minimization
Zifa Wang
Nan Ding
Tomer Levinboim
Xi Chen
Radu Soricut
AAML
37
5
0
22 Nov 2022
Towards Robust Dataset Learning
Yihan Wu
Xinda Li
Florian Kerschbaum
Heng Huang
Hongyang R. Zhang
DD
OOD
49
10
0
19 Nov 2022
Improved techniques for deterministic l2 robustness
Sahil Singla
S. Feizi
AAML
25
10
0
15 Nov 2022
Accelerating Certified Robustness Training via Knowledge Transfer
Pratik Vaishnavi
Kevin Eykholt
Amir Rahmati
27
7
0
25 Oct 2022
Certified Training: Small Boxes are All You Need
Mark Niklas Muller
Franziska Eckert
Marc Fischer
Martin Vechev
AAML
39
46
0
10 Oct 2022
On the tightness of linear relaxation based robustness certification methods
Cheng Tang
AAML
44
0
0
01 Oct 2022
Adversarial Robustness for Tabular Data through Cost and Utility Awareness
Klim Kireev
B. Kulynych
Carmela Troncoso
AAML
26
16
0
27 Aug 2022
A Novel Plug-and-Play Approach for Adversarially Robust Generalization
Deepak Maurya
Adarsh Barik
Jean Honorio
OOD
AAML
46
0
0
19 Aug 2022
A Scalable, Interpretable, Verifiable & Differentiable Logic Gate Convolutional Neural Network Architecture From Truth Tables
Adrien Benamira
Tristan Guérand
Thomas Peyrin
Trevor Yap
Bryan Hooi
40
1
0
18 Aug 2022
Lipschitz Bound Analysis of Neural Networks
S. Bose
AAML
39
0
0
14 Jul 2022
Provably Adversarially Robust Nearest Prototype Classifiers
Václav Voráček
Matthias Hein
AAML
20
11
0
14 Jul 2022
IBP Regularization for Verified Adversarial Robustness via Branch-and-Bound
Alessandro De Palma
Rudy Bunel
Krishnamurthy Dvijotham
M. P. Kumar
Robert Stanforth
AAML
48
17
0
29 Jun 2022
Can pruning improve certified robustness of neural networks?
Zhangheng Li
Tianlong Chen
Linyi Li
Bo-wen Li
Zhangyang Wang
AAML
19
12
0
15 Jun 2022
A Simple Approach to Adversarial Robustness in Few-shot Image Classification
Akshayvarun Subramanya
Hamed Pirsiavash
VLM
29
6
0
11 Apr 2022
How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective
Yimeng Zhang
Yuguang Yao
Jinghan Jia
Jinfeng Yi
Min-Fong Hong
Shiyu Chang
Sijia Liu
AAML
26
33
0
27 Mar 2022
A Unified View of SDP-based Neural Network Verification through Completely Positive Programming
Robin Brown
Edward Schmerling
Navid Azizan
Marco Pavone
AAML
24
15
0
06 Mar 2022
Robust Probabilistic Time Series Forecasting
Taeho Yoon
Youngsuk Park
Ernest K. Ryu
Yuyang Wang
AAML
AI4TS
25
18
0
24 Feb 2022
Holistic Adversarial Robustness of Deep Learning Models
Pin-Yu Chen
Sijia Liu
AAML
51
16
0
15 Feb 2022
Layer-wise Regularized Adversarial Training using Layers Sustainability Analysis (LSA) framework
Mohammad Khalooei
M. Homayounpour
M. Amirmazlaghani
AAML
25
3
0
05 Feb 2022
The Fundamental Limits of Interval Arithmetic for Neural Networks
M. Mirman
Maximilian Baader
Martin Vechev
32
6
0
09 Dec 2021
Adaptive Perturbation for Adversarial Attack
Zheng Yuan
Jie Zhang
Zhaoyan Jiang
Liangliang Li
Shiguang Shan
AAML
29
3
0
27 Nov 2021
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds
Yujia Huang
Huan Zhang
Yuanyuan Shi
J Zico Kolter
Anima Anandkumar
41
76
0
02 Nov 2021
Impact of Attention on Adversarial Robustness of Image Classification Models
Prachi Agrawal
Narinder Singh Punn
S. K. Sonbhadra
Sonali Agarwal
AAML
24
6
0
02 Sep 2021
Learning to Give Checkable Answers with Prover-Verifier Games
Cem Anil
Guodong Zhang
Yuhuai Wu
Roger C. Grosse
27
15
0
27 Aug 2021
Existence, Stability and Scalability of Orthogonal Convolutional Neural Networks
El Mehdi Achour
Franccois Malgouyres
Franck Mamalet
18
21
0
12 Aug 2021
Meta Gradient Adversarial Attack
Zheng Yuan
Jie Zhang
Yunpei Jia
Chuanqi Tan
Tao Xue
Shiguang Shan
AAML
51
78
0
09 Aug 2021
ROPUST: Improving Robustness through Fine-tuning with Photonic Processors and Synthetic Gradients
Alessandro Cappelli
Julien Launay
Laurent Meunier
Ruben Ohana
Iacopo Poli
AAML
29
4
0
06 Jul 2021
DeepSplit: Scalable Verification of Deep Neural Networks via Operator Splitting
Shaoru Chen
Eric Wong
Zico Kolter
Mahyar Fazlyab
47
15
0
16 Jun 2021
Adversarial Robustness via Fisher-Rao Regularization
Marine Picot
Francisco Messina
Malik Boudiaf
Fabrice Labeau
Ismail Ben Ayed
Pablo Piantanida
AAML
31
23
0
12 Jun 2021
A Review of Formal Methods applied to Machine Learning
Caterina Urban
Antoine Miné
41
55
0
06 Apr 2021
Learning Defense Transformers for Counterattacking Adversarial Examples
Jincheng Li
Jingyun Liang
Yifan Zhang
Jian Chen
Mingkui Tan
AAML
37
2
0
13 Mar 2021
PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations
Mark Niklas Muller
Gleb Makarchuk
Gagandeep Singh
Markus Püschel
Martin Vechev
41
90
0
05 Mar 2021
Globally-Robust Neural Networks
Klas Leino
Zifan Wang
Matt Fredrikson
AAML
OOD
80
126
0
16 Feb 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
37
45
0
15 Feb 2021
On the Paradox of Certified Training
Nikola Jovanović
Mislav Balunović
Maximilian Baader
Martin Vechev
OOD
28
13
0
12 Feb 2021
Fast Training of Provably Robust Neural Networks by SingleProp
Akhilan Boopathy
Tsui-Wei Weng
Sijia Liu
Pin-Yu Chen
Gaoyuan Zhang
Luca Daniel
AAML
11
7
0
01 Feb 2021
Adversarially Robust Classification based on GLRT
Bhagyashree Puranik
Upamanyu Madhow
Ramtin Pedarsani
VLM
AAML
23
4
0
16 Nov 2020
Almost Tight L0-norm Certified Robustness of Top-k Predictions against Adversarial Perturbations
Jinyuan Jia
Binghui Wang
Xiaoyu Cao
Hongbin Liu
Neil Zhenqiang Gong
21
24
0
15 Nov 2020
A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems
Jiawei Zhang
Peijun Xiao
Ruoyu Sun
Zhi-Quan Luo
33
97
0
29 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
17
324
0
07 Oct 2020
Block-wise Image Transformation with Secret Key for Adversarially Robust Defense
Maungmaung Aprilpyone
Hitoshi Kiya
29
57
0
02 Oct 2020
1
2
3
Next