ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.11272
  4. Cited By
Improved Mixed-Example Data Augmentation

Improved Mixed-Example Data Augmentation

29 May 2018
Cecilia Summers
M. Dinneen
ArXivPDFHTML

Papers citing "Improved Mixed-Example Data Augmentation"

25 / 25 papers shown
Title
Tailoring Mixup to Data for Calibration
Tailoring Mixup to Data for Calibration
Quentin Bouniot
Pavlo Mozharovskyi
Florence dÁlché-Buc
61
1
0
02 Nov 2023
Physical Knowledge Enhanced Deep Neural Network for Sea Surface
  Temperature Prediction
Physical Knowledge Enhanced Deep Neural Network for Sea Surface Temperature Prediction
Yuxin Meng
Feng Gao
Eric Rigall
Ran Dong
Junyu Dong
Q. Du
29
20
0
19 Apr 2023
A Survey of Mix-based Data Augmentation: Taxonomy, Methods,
  Applications, and Explainability
A Survey of Mix-based Data Augmentation: Taxonomy, Methods, Applications, and Explainability
Chengtai Cao
Fan Zhou
Yurou Dai
Jianping Wang
Kunpeng Zhang
AAML
24
28
0
21 Dec 2022
Deep Learning Training Procedure Augmentations
Deep Learning Training Procedure Augmentations
Cristian Simionescu
11
1
0
25 Nov 2022
Extending Temporal Data Augmentation for Video Action Recognition
Extending Temporal Data Augmentation for Video Action Recognition
Artjoms Gorpincenko
Michal Mackiewicz
ViT
29
4
0
09 Nov 2022
Analyzing the Impact of Shape & Context on the Face Recognition
  Performance of Deep Networks
Analyzing the Impact of Shape & Context on the Face Recognition Performance of Deep Networks
Sandipan Banerjee
Walter J. Scheirer
Kevin W. Bowyer
Patrick Flynn
3DPC
3DH
CVBM
24
1
0
05 Aug 2022
Light In The Black: An Evaluation of Data Augmentation Techniques for
  COVID-19 CT's Semantic Segmentation
Light In The Black: An Evaluation of Data Augmentation Techniques for COVID-19 CT's Semantic Segmentation
Bruno A. Krinski
Daniel V. Ruiz
E. Todt
3DPC
39
2
0
19 May 2022
Contrastive-mixup learning for improved speaker verification
Contrastive-mixup learning for improved speaker verification
Xin Zhang
Minho Jin
R. Cheng
Ruirui Li
Eunjung Han
A. Stolcke
AAML
SSL
25
10
0
22 Feb 2022
Unified smoke and fire detection in an evolutionary framework with
  self-supervised progressive data augment
Unified smoke and fire detection in an evolutionary framework with self-supervised progressive data augment
Han Zhang
Suyan Yang
Hongyong Wang
zhongyan lu
Helin Sun
14
0
0
16 Feb 2022
Feature transforms for image data augmentation
Feature transforms for image data augmentation
L. Nanni
M. Paci
S. Brahnam
A. Lumini
32
19
0
24 Jan 2022
Data augmentation through multivariate scenario forecasting in Data
  Centers using Generative Adversarial Networks
Data augmentation through multivariate scenario forecasting in Data Centers using Generative Adversarial Networks
J. Pérez
Patricia Arroba
Jose M. Moya
27
14
0
12 Jan 2022
3D-VField: Adversarial Augmentation of Point Clouds for Domain
  Generalization in 3D Object Detection
3D-VField: Adversarial Augmentation of Point Clouds for Domain Generalization in 3D Object Detection
Alexander Lehner
Stefano Gasperini
Alvaro Marcos-Ramiro
Michael Schmidt
M. N. Mahani
Nassir Navab
Benjamin Busam
F. Tombari
3DPC
29
51
0
09 Dec 2021
The Majority Can Help The Minority: Context-rich Minority Oversampling
  for Long-tailed Classification
The Majority Can Help The Minority: Context-rich Minority Oversampling for Long-tailed Classification
Seulki Park
Youngkyu Hong
Byeongho Heo
Sangdoo Yun
J. Choi
20
147
0
01 Dec 2021
Training Lightweight CNNs for Human-Nanodrone Proximity Interaction from
  Small Datasets using Background Randomization
Training Lightweight CNNs for Human-Nanodrone Proximity Interaction from Small Datasets using Background Randomization
Marco Ferri
Dario Mantegazza
Elia Cereda
Nicky Zimmerman
L. Gambardella
Daniele Palossi
Jérôme Guzzi
Alessandro Giusti
32
0
0
27 Oct 2021
SynFace: Face Recognition with Synthetic Data
SynFace: Face Recognition with Synthetic Data
Haibo Qiu
Baosheng Yu
Dihong Gong
Zhifeng Li
Wei Liu
Dacheng Tao
27
124
0
18 Aug 2021
An overview of mixing augmentation methods and augmentation strategies
An overview of mixing augmentation methods and augmentation strategies
Dominik Lewy
Jacek Mańdziuk
23
61
0
21 Jul 2021
Fine-Grained AutoAugmentation for Multi-Label Classification
Fine-Grained AutoAugmentation for Multi-Label Classification
Y. Wang
Hesen Chen
Fangyi Zhang
Yaohua Wang
Xiuyu Sun
Ming Lin
Hao Li
29
2
0
12 Jul 2021
Survey: Image Mixing and Deleting for Data Augmentation
Survey: Image Mixing and Deleting for Data Augmentation
Humza Naveed
Saeed Anwar
Munawar Hayat
Kashif Javed
Ajmal Mian
38
78
0
13 Jun 2021
AlignMixup: Improving Representations By Interpolating Aligned Features
AlignMixup: Improving Representations By Interpolating Aligned Features
Shashanka Venkataramanan
Ewa Kijak
Laurent Amsaleg
Yannis Avrithis
WSOL
33
61
0
29 Mar 2021
Tilting at windmills: Data augmentation for deep pose estimation does
  not help with occlusions
Tilting at windmills: Data augmentation for deep pose estimation does not help with occlusions
Rafal Pytel
O. Kayhan
Jan van Gemert
3DPC
24
6
0
20 Oct 2020
Mixup-CAM: Weakly-supervised Semantic Segmentation via Uncertainty
  Regularization
Mixup-CAM: Weakly-supervised Semantic Segmentation via Uncertainty Regularization
Yu-Ting Chang
Qiaosong Wang
Wei-Chih Hung
Robinson Piramuthu
Yi-Hsuan Tsai
Ming-Hsuan Yang
UQCV
WSOL
22
34
0
03 Aug 2020
Human-Expert-Level Brain Tumor Detection Using Deep Learning with Data
  Distillation and Augmentation
Human-Expert-Level Brain Tumor Detection Using Deep Learning with Data Distillation and Augmentation
D. Lu
N. Polomac
Iskra Gacheva
E. Hattingen
Jochen Triesch
18
18
0
17 Jun 2020
RoIMix: Proposal-Fusion among Multiple Images for Underwater Object
  Detection
RoIMix: Proposal-Fusion among Multiple Images for Underwater Object Detection
Weihong Lin
Jia-Xing Zhong
Shan Liu
Thomas H. Li
Ge Li
ObjD
18
111
0
08 Nov 2019
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
349
4,693
0
13 May 2019
Good-Enough Compositional Data Augmentation
Good-Enough Compositional Data Augmentation
Jacob Andreas
30
230
0
21 Apr 2019
1