ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.10965
  4. Cited By
Lipschitz regularity of deep neural networks: analysis and efficient
  estimation

Lipschitz regularity of deep neural networks: analysis and efficient estimation

28 May 2018
Kevin Scaman
Aladin Virmaux
ArXivPDFHTML

Papers citing "Lipschitz regularity of deep neural networks: analysis and efficient estimation"

50 / 329 papers shown
Title
Neural PDE Solvers for Irregular Domains
Neural PDE Solvers for Irregular Domains
Biswajit Khara
Ethan Herron
Zhanhong Jiang
Aditya Balu
Chih-Hsuan Yang
...
Anushrut Jignasu
S. Sarkar
C. Hegde
A. Krishnamurthy
Baskar Ganapathysubramanian
AI4CE
24
7
0
07 Nov 2022
Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node
  Representations
Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node Representations
Giannis Nikolentzos
Michail Chatzianastasis
Michalis Vazirgiannis
21
7
0
04 Nov 2022
Isometric Representations in Neural Networks Improve Robustness
Isometric Representations in Neural Networks Improve Robustness
Kosio Beshkov
Jonas Verhellen
M. Lepperød
AAML
OOD
30
1
0
02 Nov 2022
Improving Lipschitz-Constrained Neural Networks by Learning Activation
  Functions
Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions
Stanislas Ducotterd
Alexis Goujon
Pakshal Bohra
Dimitris Perdios
Sebastian Neumayer
M. Unser
35
12
0
28 Oct 2022
A Policy-Guided Imitation Approach for Offline Reinforcement Learning
A Policy-Guided Imitation Approach for Offline Reinforcement Learning
Haoran Xu
Li Jiang
Jianxiong Li
Xianyuan Zhan
OffRL
26
62
0
15 Oct 2022
Zonotope Domains for Lagrangian Neural Network Verification
Zonotope Domains for Lagrangian Neural Network Verification
Matt Jordan
J. Hayase
A. Dimakis
Sewoong Oh
26
4
0
14 Oct 2022
Efficiently Computing Local Lipschitz Constants of Neural Networks via
  Bound Propagation
Efficiently Computing Local Lipschitz Constants of Neural Networks via Bound Propagation
Zhouxing Shi
Yihan Wang
Huan Zhang
Zico Kolter
Cho-Jui Hsieh
102
40
0
13 Oct 2022
On the Effectiveness of Lipschitz-Driven Rehearsal in Continual Learning
On the Effectiveness of Lipschitz-Driven Rehearsal in Continual Learning
Lorenzo Bonicelli
Matteo Boschini
Angelo Porrello
C. Spampinato
Simone Calderara
CLL
26
45
0
12 Oct 2022
On the Importance of Gradient Norm in PAC-Bayesian Bounds
On the Importance of Gradient Norm in PAC-Bayesian Bounds
Itai Gat
Yossi Adi
A. Schwing
Tamir Hazan
BDL
37
6
0
12 Oct 2022
Self-explaining Hierarchical Model for Intraoperative Time Series
Self-explaining Hierarchical Model for Intraoperative Time Series
Dingwen Li
Bing Xue
C. King
Bradley A. Fritz
M. Avidan
Joanna Abraham
Chenyang Lu
AI4CE
21
3
0
10 Oct 2022
Tree Mover's Distance: Bridging Graph Metrics and Stability of Graph
  Neural Networks
Tree Mover's Distance: Bridging Graph Metrics and Stability of Graph Neural Networks
Ching-Yao Chuang
Stefanie Jegelka
OOD
67
35
0
04 Oct 2022
Learning-based Design of Luenberger Observers for Autonomous Nonlinear
  Systems
Learning-based Design of Luenberger Observers for Autonomous Nonlinear Systems
Muhammad Umar B. Niazi
Johnson R. Cao
Xu-yang Sun
Amritam Das
Karl H. Johansson
OOD
15
22
0
04 Oct 2022
Polynomial-Time Reachability for LTI Systems with Two-Level Lattice
  Neural Network Controllers
Polynomial-Time Reachability for LTI Systems with Two-Level Lattice Neural Network Controllers
James Ferlez
Yasser Shoukry
29
1
0
20 Sep 2022
On the Shift Invariance of Max Pooling Feature Maps in Convolutional Neural Networks
On the Shift Invariance of Max Pooling Feature Maps in Convolutional Neural Networks
Hubert Leterme
K. Polisano
V. Perrier
Alahari Karteek
FAtt
38
2
0
19 Sep 2022
Prompt Tuning with Soft Context Sharing for Vision-Language Models
Prompt Tuning with Soft Context Sharing for Vision-Language Models
Kun Ding
Ying Wang
Pengzhang Liu
Qiang Yu
Hao Zhang
Shiming Xiang
Chunhong Pan
VPVLM
VLM
29
14
0
29 Aug 2022
Hierarchical Perceptual Noise Injection for Social Media Fingerprint
  Privacy Protection
Hierarchical Perceptual Noise Injection for Social Media Fingerprint Privacy Protection
Simin Li
Huangxinxin Xu
Jiakai Wang
Aishan Liu
Fazhi He
Xianglong Liu
Dacheng Tao
AAML
28
5
0
23 Aug 2022
Critical Bach Size Minimizes Stochastic First-Order Oracle Complexity of
  Deep Learning Optimizer using Hyperparameters Close to One
Critical Bach Size Minimizes Stochastic First-Order Oracle Complexity of Deep Learning Optimizer using Hyperparameters Close to One
Hideaki Iiduka
ODL
38
4
0
21 Aug 2022
Delaunay-Triangulation-Based Learning with Hessian Total-Variation
  Regularization
Delaunay-Triangulation-Based Learning with Hessian Total-Variation Regularization
Mehrsa Pourya
Alexis Goujon
M. Unser
30
5
0
16 Aug 2022
Robust Training and Verification of Implicit Neural Networks: A
  Non-Euclidean Contractive Approach
Robust Training and Verification of Implicit Neural Networks: A Non-Euclidean Contractive Approach
Saber Jafarpour
A. Davydov
Matthew Abate
Francesco Bullo
Samuel Coogan
13
1
0
08 Aug 2022
Almost-Orthogonal Layers for Efficient General-Purpose Lipschitz
  Networks
Almost-Orthogonal Layers for Efficient General-Purpose Lipschitz Networks
Bernd Prach
Christoph H. Lampert
32
35
0
05 Aug 2022
Stable Parallel Training of Wasserstein Conditional Generative
  Adversarial Neural Networks
Stable Parallel Training of Wasserstein Conditional Generative Adversarial Neural Networks
Massimiliano Lupo Pasini
Junqi Yin
GAN
19
4
0
25 Jul 2022
Unveiling the Latent Space Geometry of Push-Forward Generative Models
Unveiling the Latent Space Geometry of Push-Forward Generative Models
Thibaut Issenhuth
Ugo Tanielian
Jérémie Mary
David Picard
GAN
DRL
29
3
0
21 Jul 2022
Lipschitz Bound Analysis of Neural Networks
Lipschitz Bound Analysis of Neural Networks
S. Bose
AAML
32
0
0
14 Jul 2022
Contrastive Adapters for Foundation Model Group Robustness
Contrastive Adapters for Foundation Model Group Robustness
Michael Zhang
Christopher Ré
VLM
18
62
0
14 Jul 2022
Lipschitz Continuity Retained Binary Neural Network
Lipschitz Continuity Retained Binary Neural Network
Yuzhang Shang
Dan Xu
Bin Duan
Ziliang Zong
Liqiang Nie
Yan Yan
16
19
0
13 Jul 2022
On the Robustness and Anomaly Detection of Sparse Neural Networks
On the Robustness and Anomaly Detection of Sparse Neural Networks
Morgane Ayle
Bertrand Charpentier
John Rachwan
Daniel Zügner
Simon Geisler
Stephan Günnemann
AAML
55
3
0
09 Jul 2022
Can Push-forward Generative Models Fit Multimodal Distributions?
Can Push-forward Generative Models Fit Multimodal Distributions?
Antoine Salmona
Valentin De Bortoli
J. Delon
A. Desolneux
DiffM
35
37
0
29 Jun 2022
Theoretical analysis of Adam using hyperparameters close to one without
  Lipschitz smoothness
Theoretical analysis of Adam using hyperparameters close to one without Lipschitz smoothness
Hideaki Iiduka
20
5
0
27 Jun 2022
Analyzing Explainer Robustness via Probabilistic Lipschitzness of
  Prediction Functions
Analyzing Explainer Robustness via Probabilistic Lipschitzness of Prediction Functions
Zulqarnain Khan
Davin Hill
A. Masoomi
Joshua Bone
Jennifer Dy
AAML
41
3
0
24 Jun 2022
Efficiently Training Low-Curvature Neural Networks
Efficiently Training Low-Curvature Neural Networks
Suraj Srinivas
Kyle Matoba
Himabindu Lakkaraju
F. Fleuret
AAML
23
15
0
14 Jun 2022
The robust way to stack and bag: the local Lipschitz way
The robust way to stack and bag: the local Lipschitz way
Thulasi Tholeti
Sheetal Kalyani
AAML
23
5
0
01 Jun 2022
Vision GNN: An Image is Worth Graph of Nodes
Vision GNN: An Image is Worth Graph of Nodes
Kai Han
Yunhe Wang
Jianyuan Guo
Yehui Tang
Enhua Wu
GNN
3DH
19
356
0
01 Jun 2022
ALLSH: Active Learning Guided by Local Sensitivity and Hardness
ALLSH: Active Learning Guided by Local Sensitivity and Hardness
Shujian Zhang
Chengyue Gong
Xingchao Liu
Pengcheng He
Weizhu Chen
Mingyuan Zhou
27
26
0
10 May 2022
Robust Learning of Parsimonious Deep Neural Networks
Robust Learning of Parsimonious Deep Neural Networks
Valentin Frank Ingmar Guenter
Athanasios Sideris
32
2
0
10 May 2022
Private measures, random walks, and synthetic data
Private measures, random walks, and synthetic data
M. Boedihardjo
Thomas Strohmer
Roman Vershynin
23
0
0
20 Apr 2022
Towards a Unified Framework for Uncertainty-aware Nonlinear Variable
  Selection with Theoretical Guarantees
Towards a Unified Framework for Uncertainty-aware Nonlinear Variable Selection with Theoretical Guarantees
Wenying Deng
Beau Coker
Rajarshi Mukherjee
J. Liu
B. Coull
19
2
0
15 Apr 2022
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Sebastian Neumayer
Alexis Goujon
Pakshal Bohra
M. Unser
37
16
0
13 Apr 2022
Weight Matrix Dimensionality Reduction in Deep Learning via Kronecker
  Multi-layer Architectures
Weight Matrix Dimensionality Reduction in Deep Learning via Kronecker Multi-layer Architectures
Jarom D. Hogue
Robert M. Kirby
A. Narayan
6
0
0
08 Apr 2022
A Differentially Private Framework for Deep Learning with Convexified
  Loss Functions
A Differentially Private Framework for Deep Learning with Convexified Loss Functions
Zhigang Lu
Hassan Jameel Asghar
M. Kâafar
Darren Webb
Peter Dickinson
77
15
0
03 Apr 2022
Chordal Sparsity for Lipschitz Constant Estimation of Deep Neural
  Networks
Chordal Sparsity for Lipschitz Constant Estimation of Deep Neural Networks
Anton Xue
Lars Lindemann
Alexander Robey
Hamed Hassani
George J. Pappas
Rajeev Alur
37
13
0
02 Apr 2022
Comparative Analysis of Interval Reachability for Robust Implicit and
  Feedforward Neural Networks
Comparative Analysis of Interval Reachability for Robust Implicit and Feedforward Neural Networks
A. Davydov
Saber Jafarpour
Matthew Abate
Francesco Bullo
Samuel Coogan
20
3
0
01 Apr 2022
A Perturbation-Constrained Adversarial Attack for Evaluating the
  Robustness of Optical Flow
A Perturbation-Constrained Adversarial Attack for Evaluating the Robustness of Optical Flow
Jenny Schmalfuss
Philipp Scholze
Andrés Bruhn
AAML
32
19
0
24 Mar 2022
On the Properties of Adversarially-Trained CNNs
On the Properties of Adversarially-Trained CNNs
Mattia Carletti
M. Terzi
Gian Antonio Susto
AAML
32
1
0
17 Mar 2022
On the sensitivity of pose estimation neural networks: rotation
  parameterizations, Lipschitz constants, and provable bounds
On the sensitivity of pose estimation neural networks: rotation parameterizations, Lipschitz constants, and provable bounds
Trevor Avant
K. Morgansen
11
1
0
16 Mar 2022
Deep Generative Models for Downlink Channel Estimation in FDD Massive
  MIMO Systems
Deep Generative Models for Downlink Channel Estimation in FDD Massive MIMO Systems
Javad Mirzaei
Shahram Shahbaz Panahi
R. Adve
Navaneetha Gopal
27
4
0
09 Mar 2022
A Quantitative Geometric Approach to Neural-Network Smoothness
A Quantitative Geometric Approach to Neural-Network Smoothness
Zehao Wang
Gautam Prakriya
S. Jha
43
13
0
02 Mar 2022
A Domain-Theoretic Framework for Robustness Analysis of Neural Networks
A Domain-Theoretic Framework for Robustness Analysis of Neural Networks
Can Zhou
R. A. Shaikh
Yiran Li
Amin Farjudian
OOD
38
4
0
01 Mar 2022
Adversarial robustness of sparse local Lipschitz predictors
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
34
13
0
26 Feb 2022
Learning Smooth Neural Functions via Lipschitz Regularization
Learning Smooth Neural Functions via Lipschitz Regularization
Hsueh-Ti Derek Liu
Francis Williams
Alec Jacobson
Sanja Fidler
Or Litany
27
96
0
16 Feb 2022
L2C2: Locally Lipschitz Continuous Constraint towards Stable and Smooth
  Reinforcement Learning
L2C2: Locally Lipschitz Continuous Constraint towards Stable and Smooth Reinforcement Learning
Taisuke Kobayashi
26
15
0
15 Feb 2022
Previous
1234567
Next