Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.10820
Cited By
Local Rule-Based Explanations of Black Box Decision Systems
28 May 2018
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
D. Pedreschi
Franco Turini
F. Giannotti
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Local Rule-Based Explanations of Black Box Decision Systems"
42 / 192 papers shown
Title
Accurate and Intuitive Contextual Explanations using Linear Model Trees
Aditya Lahiri
N. Edakunni
FAtt
6
2
0
11 Sep 2020
Explainable Artificial Intelligence for Process Mining: A General Overview and Application of a Novel Local Explanation Approach for Predictive Process Monitoring
Nijat Mehdiyev
Peter Fettke
AI4TS
25
55
0
04 Sep 2020
Can We Trust Your Explanations? Sanity Checks for Interpreters in Android Malware Analysis
Ming Fan
Wenying Wei
Xiaofei Xie
Yang Liu
X. Guan
Ting Liu
FAtt
AAML
14
36
0
13 Aug 2020
Causality Learning: A New Perspective for Interpretable Machine Learning
Guandong Xu
Tri Dung Duong
Q. Li
S. Liu
Xianzhi Wang
XAI
OOD
CML
8
51
0
27 Jun 2020
Explaining Predictions by Approximating the Local Decision Boundary
G. Vlassopoulos
T. Erven
Henry Brighton
Vlado Menkovski
FAtt
17
8
0
14 Jun 2020
Explainable Matrix -- Visualization for Global and Local Interpretability of Random Forest Classification Ensembles
Mário Popolin Neto
F. Paulovich
FAtt
33
88
0
08 May 2020
Post-hoc explanation of black-box classifiers using confident itemsets
M. Moradi
Matthias Samwald
57
97
0
05 May 2020
A multi-component framework for the analysis and design of explainable artificial intelligence
S. Atakishiyev
H. Babiker
Nawshad Farruque
R. Goebel1
Myeongjung Kima
M. H. Motallebi
J. Rabelo
T. Syed
O. R. Zaïane
38
35
0
05 May 2020
Towards Interpretable ANNs: An Exact Transformation to Multi-Class Multivariate Decision Trees
Duy T. Nguyen
Kathryn E. Kasmarik
H. Abbass
6
8
0
10 Mar 2020
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Amir-Hossein Karimi
Bernhard Schölkopf
Isabel Valera
CML
24
337
0
14 Feb 2020
Convex Density Constraints for Computing Plausible Counterfactual Explanations
André Artelt
Barbara Hammer
19
47
0
12 Feb 2020
Interpretable Companions for Black-Box Models
Dan-qing Pan
Tong Wang
Satoshi Hara
FaML
12
8
0
10 Feb 2020
Black Box Explanation by Learning Image Exemplars in the Latent Feature Space
Riccardo Guidotti
A. Monreale
Stan Matwin
D. Pedreschi
FAtt
6
67
0
27 Jan 2020
"Why is 'Chicago' deceptive?" Towards Building Model-Driven Tutorials for Humans
Vivian Lai
Han Liu
Chenhao Tan
24
138
0
14 Jan 2020
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
38
300
0
08 Jan 2020
Questioning the AI: Informing Design Practices for Explainable AI User Experiences
Q. V. Liao
D. Gruen
Sarah Miller
52
703
0
08 Jan 2020
Counterfactual Explanation Algorithms for Behavioral and Textual Data
Yanou Ramon
David Martens
F. Provost
Theodoros Evgeniou
FAtt
15
87
0
04 Dec 2019
Automated Dependence Plots
David I. Inouye
Liu Leqi
Joon Sik Kim
Bryon Aragam
Pradeep Ravikumar
12
1
0
02 Dec 2019
ACE -- An Anomaly Contribution Explainer for Cyber-Security Applications
Xiao Zhang
Manish Marwah
I-Ta Lee
M. Arlitt
Dan Goldwasser
10
14
0
01 Dec 2019
FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles
Ana Lucic
Harrie Oosterhuis
H. Haned
Maarten de Rijke
LRM
6
61
0
27 Nov 2019
On the computation of counterfactual explanations -- A survey
André Artelt
Barbara Hammer
LRM
22
50
0
15 Nov 2019
An Active Approach for Model Interpretation
Jialin Lu
Martin Ester
17
0
0
27 Oct 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
S. Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
37
6,110
0
22 Oct 2019
Identifying the Most Explainable Classifier
Brett Mullins
FAtt
16
1
0
18 Oct 2019
MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming
Yura N. Perov
L. Graham
Kostis Gourgoulias
Jonathan G. Richens
Ciarán M. Gilligan-Lee
Adam Baker
Saurabh Johri
LRM
12
17
0
17 Oct 2019
Testing and verification of neural-network-based safety-critical control software: A systematic literature review
Jin Zhang
Jingyue Li
20
47
0
05 Oct 2019
REDS: Rule Extraction for Discovering Scenarios
Vadim Arzamasov
Klemens Böhm
11
6
0
03 Oct 2019
Interpreting Undesirable Pixels for Image Classification on Black-Box Models
Sin-Han Kang
Hong G Jung
Seong-Whan Lee
FAtt
14
3
0
27 Sep 2019
LoRMIkA: Local rule-based model interpretability with k-optimal associations
Dilini Sewwandi Rajapaksha
Christoph Bergmeir
Wray L. Buntine
32
31
0
11 Aug 2019
Measurable Counterfactual Local Explanations for Any Classifier
Adam White
Artur Garcez
FAtt
12
99
0
08 Aug 2019
Efficient computation of counterfactual explanations of LVQ models
André Artelt
Barbara Hammer
14
16
0
02 Aug 2019
The Dangers of Post-hoc Interpretability: Unjustified Counterfactual Explanations
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
X. Renard
Marcin Detyniecki
14
194
0
22 Jul 2019
MoËT: Mixture of Expert Trees and its Application to Verifiable Reinforcement Learning
Marko Vasic
Andrija Petrović
Kaiyuan Wang
Mladen Nikolic
Rishabh Singh
S. Khurshid
OffRL
MoE
18
22
0
16 Jun 2019
LioNets: Local Interpretation of Neural Networks through Penultimate Layer Decoding
Ioannis Mollas
Nikolaos Bassiliades
Grigorios Tsoumakas
14
12
0
15 Jun 2019
Issues with post-hoc counterfactual explanations: a discussion
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
CML
104
44
0
11 Jun 2019
CERTIFAI: Counterfactual Explanations for Robustness, Transparency, Interpretability, and Fairness of Artificial Intelligence models
Shubham Sharma
Jette Henderson
Joydeep Ghosh
11
87
0
20 May 2019
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
R. Mothilal
Amit Sharma
Chenhao Tan
CML
17
989
0
19 May 2019
An Interpretable Model with Globally Consistent Explanations for Credit Risk
Chaofan Chen
Kangcheng Lin
Cynthia Rudin
Yaron Shaposhnik
Sijia Wang
Tong Wang
FAtt
7
93
0
30 Nov 2018
YASENN: Explaining Neural Networks via Partitioning Activation Sequences
Yaroslav Zharov
Denis Korzhenkov
J. Lyu
Alexander Tuzhilin
FAtt
AAML
6
6
0
07 Nov 2018
On The Stability of Interpretable Models
Riccardo Guidotti
Salvatore Ruggieri
FAtt
16
10
0
22 Oct 2018
Open the Black Box Data-Driven Explanation of Black Box Decision Systems
D. Pedreschi
F. Giannotti
Riccardo Guidotti
A. Monreale
Luca Pappalardo
Salvatore Ruggieri
Franco Turini
11
38
0
26 Jun 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
17
3,903
0
06 Feb 2018
Previous
1
2
3
4