Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.10820
Cited By
Local Rule-Based Explanations of Black Box Decision Systems
28 May 2018
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
D. Pedreschi
Franco Turini
F. Giannotti
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Local Rule-Based Explanations of Black Box Decision Systems"
50 / 192 papers shown
Title
XPROAX-Local explanations for text classification with progressive neighborhood approximation
Yi Cai
Arthur Zimek
Eirini Ntoutsi
25
5
0
30 Sep 2021
Exploring The Role of Local and Global Explanations in Recommender Systems
Marissa Radensky
Doug Downey
Kyle Lo
Z. Popović
Daniel S. Weld University of Washington
LRM
13
20
0
27 Sep 2021
Counterfactual Instances Explain Little
Adam White
Artur Garcez
CML
27
5
0
20 Sep 2021
An Exploration And Validation of Visual Factors in Understanding Classification Rule Sets
Jun Yuan
O. Nov
E. Bertini
20
10
0
19 Sep 2021
Beyond Average Performance -- exploring regions of deviating performance for black box classification models
Luís Torgo
Paulo Azevedo
Inês Areosa
11
2
0
16 Sep 2021
AdViCE: Aggregated Visual Counterfactual Explanations for Machine Learning Model Validation
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
CML
HAI
16
21
0
12 Sep 2021
Interpretable Run-Time Prediction and Planning in Co-Robotic Environments
Rahul Peddi
N. Bezzo
20
2
0
08 Sep 2021
Synthesizing Pareto-Optimal Interpretations for Black-Box Models
Hazem Torfah
Shetal Shah
Supratik Chakraborty
S. Akshay
S. Seshia
22
6
0
16 Aug 2021
Logic Explained Networks
Gabriele Ciravegna
Pietro Barbiero
Francesco Giannini
Marco Gori
Pietro Lió
Marco Maggini
S. Melacci
35
69
0
11 Aug 2021
Desiderata for Explainable AI in statistical production systems of the European Central Bank
Carlos Navarro
Georgios Kanellos
Thomas Gottron
12
9
0
18 Jul 2021
Understanding surrogate explanations: the interplay between complexity, fidelity and coverage
Rafael Poyiadzi
X. Renard
Thibault Laugel
Raúl Santos-Rodríguez
Marcin Detyniecki
11
6
0
09 Jul 2021
A Review of Explainable Artificial Intelligence in Manufacturing
G. Sofianidis
Jože M. Rožanec
Dunja Mladenić
D. Kyriazis
17
17
0
05 Jul 2021
Productivity, Portability, Performance: Data-Centric Python
Yiheng Wang
Yao Zhang
Yanzhang Wang
Yan Wan
Jiao Wang
Zhongyuan Wu
Yuhao Yang
Bowen She
52
94
0
01 Jul 2021
Explanation-Guided Diagnosis of Machine Learning Evasion Attacks
Abderrahmen Amich
Birhanu Eshete
AAML
17
10
0
30 Jun 2021
On Locality of Local Explanation Models
Sahra Ghalebikesabi
Lucile Ter-Minassian
Karla Diaz-Ordaz
Chris Holmes
FedML
FAtt
18
39
0
24 Jun 2021
Multivariate Data Explanation by Jumping Emerging Patterns Visualization
Mário Popolin Neto
F. Paulovich
24
7
0
21 Jun 2021
An Empirical Investigation into Deep and Shallow Rule Learning
Florian Beck
Johannes Furnkranz
NAI
18
7
0
18 Jun 2021
A Framework for Evaluating Post Hoc Feature-Additive Explainers
Zachariah Carmichael
Walter J. Scheirer
FAtt
46
4
0
15 Jun 2021
Counterfactual Explanations as Interventions in Latent Space
Riccardo Crupi
Alessandro Castelnovo
D. Regoli
Beatriz San Miguel González
CML
8
23
0
14 Jun 2021
Certification of embedded systems based on Machine Learning: A survey
Guillaume Vidot
Christophe Gabreau
I. Ober
Iulian Ober
11
12
0
14 Jun 2021
Entropy-based Logic Explanations of Neural Networks
Pietro Barbiero
Gabriele Ciravegna
Francesco Giannini
Pietro Lió
Marco Gori
S. Melacci
FAtt
XAI
25
78
0
12 Jun 2021
On the overlooked issue of defining explanation objectives for local-surrogate explainers
Rafael Poyiadzi
X. Renard
Thibault Laugel
Raúl Santos-Rodríguez
Marcin Detyniecki
16
6
0
10 Jun 2021
Taxonomy of Machine Learning Safety: A Survey and Primer
Sina Mohseni
Haotao Wang
Zhiding Yu
Chaowei Xiao
Zhangyang Wang
J. Yadawa
21
31
0
09 Jun 2021
Amortized Generation of Sequential Algorithmic Recourses for Black-box Models
Sahil Verma
Keegan E. Hines
John P. Dickerson
22
23
0
07 Jun 2021
An exact counterfactual-example-based approach to tree-ensemble models interpretability
P. Blanchart
14
4
0
31 May 2021
Can We Faithfully Represent Masked States to Compute Shapley Values on a DNN?
J. Ren
Zhanpeng Zhou
Qirui Chen
Quanshi Zhang
FAtt
TDI
33
8
0
22 May 2021
Rule Generation for Classification: Scalability, Interpretability, and Fairness
Tabea E. Rober
Adia C. Lumadjeng
M. Akyuz
cS. .Ilker Birbil
19
2
0
21 Apr 2021
Conclusive Local Interpretation Rules for Random Forests
Ioannis Mollas
Nick Bassiliades
Grigorios Tsoumakas
FaML
FAtt
29
17
0
13 Apr 2021
Individual Explanations in Machine Learning Models: A Survey for Practitioners
Alfredo Carrillo
Luis F. Cantú
Alejandro Noriega
FaML
16
15
0
09 Apr 2021
Shapley Explanation Networks
Rui Wang
Xiaoqian Wang
David I. Inouye
TDI
FAtt
19
44
0
06 Apr 2021
Semantic XAI for contextualized demand forecasting explanations
Jože M. Rožanec
Dunja Mladenić
30
4
0
01 Apr 2021
Deep Learning for Android Malware Defenses: a Systematic Literature Review
Yue Liu
C. Tantithamthavorn
Li Li
Yepang Liu
AAML
30
77
0
09 Mar 2021
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
47
176
0
07 Mar 2021
Evaluating Robustness of Counterfactual Explanations
André Artelt
Valerie Vaquet
Riza Velioglu
Fabian Hinder
Johannes Brinkrolf
M. Schilling
Barbara Hammer
11
46
0
03 Mar 2021
Visualizing Rule Sets: Exploration and Validation of a Design Space
Jun Yuan
O. Nov
E. Bertini
23
1
0
01 Mar 2021
If Only We Had Better Counterfactual Explanations: Five Key Deficits to Rectify in the Evaluation of Counterfactual XAI Techniques
Mark T. Keane
Eoin M. Kenny
Eoin Delaney
Barry Smyth
CML
24
146
0
26 Feb 2021
Benchmarking and Survey of Explanation Methods for Black Box Models
F. Bodria
F. Giannotti
Riccardo Guidotti
Francesca Naretto
D. Pedreschi
S. Rinzivillo
XAI
33
220
0
25 Feb 2021
SQAPlanner: Generating Data-Informed Software Quality Improvement Plans
Dilini Sewwandi Rajapaksha
C. Tantithamthavorn
Jirayus Jiarpakdee
Christoph Bergmeir
J. Grundy
Wray L. Buntine
17
34
0
19 Feb 2021
Bandits for Learning to Explain from Explanations
Freya Behrens
Stefano Teso
Davide Mottin
FAtt
11
1
0
07 Feb 2021
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
115
142
0
05 Feb 2021
EUCA: the End-User-Centered Explainable AI Framework
Weina Jin
Jianyu Fan
D. Gromala
Philippe Pasquier
Ghassan Hamarneh
40
24
0
04 Feb 2021
Explaining Black-box Models for Biomedical Text Classification
M. Moradi
Matthias Samwald
31
21
0
20 Dec 2020
Why model why? Assessing the strengths and limitations of LIME
Jurgen Dieber
S. Kirrane
FAtt
17
97
0
30 Nov 2020
A Survey on the Explainability of Supervised Machine Learning
Nadia Burkart
Marco F. Huber
FaML
XAI
23
751
0
16 Nov 2020
Towards Unifying Feature Attribution and Counterfactual Explanations: Different Means to the Same End
R. Mothilal
Divyat Mahajan
Chenhao Tan
Amit Sharma
FAtt
CML
19
99
0
10 Nov 2020
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
24
162
0
20 Oct 2020
A general approach to compute the relevance of middle-level input features
Andrea Apicella
Salvatore Giugliano
Francesco Isgrò
R. Prevete
12
6
0
16 Oct 2020
A survey of algorithmic recourse: definitions, formulations, solutions, and prospects
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
FaML
14
172
0
08 Oct 2020
Visualizing Color-wise Saliency of Black-Box Image Classification Models
Yuhki Hatakeyama
Hiroki Sakuma
Yoshinori Konishi
Kohei Suenaga
FAtt
14
3
0
06 Oct 2020
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
33
62
0
11 Sep 2020
Previous
1
2
3
4
Next