ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.10157
  4. Cited By
Bayesian Deep Net GLM and GLMM

Bayesian Deep Net GLM and GLMM

25 May 2018
Minh-Ngoc Tran
Nghia Nguyen
David J. Nott
Robert Kohn
    BDL
ArXivPDFHTML

Papers citing "Bayesian Deep Net GLM and GLMM"

13 / 13 papers shown
Title
Enabling Mixed Effects Neural Networks for Diverse, Clustered Data Using
  Monte Carlo Methods
Enabling Mixed Effects Neural Networks for Diverse, Clustered Data Using Monte Carlo Methods
Andrej Tschalzev
Paul Nitschke
Lukas Kirchdorfer
Stefan Lüdtke
Christian Bartelt
Heiner Stuckenschmidt
29
0
0
01 Jul 2024
Scalable Bayesian inference for the generalized linear mixed model
Scalable Bayesian inference for the generalized linear mixed model
S. Berchuck
Felipe A. Medeiros
Sayan Mukherjee
Andrea Agazzi
29
0
0
05 Mar 2024
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CML
OOD
68
2
0
16 Oct 2023
Particle Mean Field Variational Bayes
Particle Mean Field Variational Bayes
Minh-Ngoc Tran
Paco Tseng
Robert Kohn
32
3
0
24 Mar 2023
Training Normalizing Flows from Dependent Data
Training Normalizing Flows from Dependent Data
Matthias Kirchler
C. Lippert
Marius Kloft
TPM
21
2
0
29 Sep 2022
Integrating Random Effects in Deep Neural Networks
Integrating Random Effects in Deep Neural Networks
Giora Simchoni
Saharon Rosset
BDL
AI4CE
27
21
0
07 Jun 2022
Nys-Newton: Nyström-Approximated Curvature for Stochastic Optimization
Nys-Newton: Nyström-Approximated Curvature for Stochastic Optimization
Dinesh Singh
Hardik Tankaria
M. Yamada
ODL
42
2
0
16 Oct 2021
LocalGLMnet: interpretable deep learning for tabular data
LocalGLMnet: interpretable deep learning for tabular data
Ronald Richman
M. Wüthrich
LMTD
FAtt
20
27
0
23 Jul 2021
A practical tutorial on Variational Bayes
A practical tutorial on Variational Bayes
Minh-Ngoc Tran
Trong-Nghia Nguyen
Viet-Hung Dao
BDL
29
38
0
01 Mar 2021
Assessment and adjustment of approximate inference algorithms using the
  law of total variance
Assessment and adjustment of approximate inference algorithms using the law of total variance
Xue Yu
David J. Nott
Minh-Ngoc Tran
Nadja Klein
14
15
0
20 Nov 2019
Deep Integro-Difference Equation Models for Spatio-Temporal Forecasting
Deep Integro-Difference Equation Models for Spatio-Temporal Forecasting
A. Zammit‐Mangion
C. Wikle
8
47
0
29 Oct 2019
Marginally-calibrated deep distributional regression
Marginally-calibrated deep distributional regression
Nadja Klein
David J. Nott
M. Smith
UQCV
32
14
0
26 Aug 2019
Variational Particle Approximations
Variational Particle Approximations
A. Saeedi
Tejas D. Kulkarni
Vikash K. Mansinghka
S. Gershman
82
60
0
24 Feb 2014
1