Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.10157
Cited By
Bayesian Deep Net GLM and GLMM
25 May 2018
Minh-Ngoc Tran
Nghia Nguyen
David J. Nott
Robert Kohn
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Deep Net GLM and GLMM"
13 / 13 papers shown
Title
Enabling Mixed Effects Neural Networks for Diverse, Clustered Data Using Monte Carlo Methods
Andrej Tschalzev
Paul Nitschke
Lukas Kirchdorfer
Stefan Lüdtke
Christian Bartelt
Heiner Stuckenschmidt
29
0
0
01 Jul 2024
Scalable Bayesian inference for the generalized linear mixed model
S. Berchuck
Felipe A. Medeiros
Sayan Mukherjee
Andrea Agazzi
29
0
0
05 Mar 2024
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CML
OOD
68
2
0
16 Oct 2023
Particle Mean Field Variational Bayes
Minh-Ngoc Tran
Paco Tseng
Robert Kohn
32
3
0
24 Mar 2023
Training Normalizing Flows from Dependent Data
Matthias Kirchler
C. Lippert
Marius Kloft
TPM
21
2
0
29 Sep 2022
Integrating Random Effects in Deep Neural Networks
Giora Simchoni
Saharon Rosset
BDL
AI4CE
27
21
0
07 Jun 2022
Nys-Newton: Nyström-Approximated Curvature for Stochastic Optimization
Dinesh Singh
Hardik Tankaria
M. Yamada
ODL
42
2
0
16 Oct 2021
LocalGLMnet: interpretable deep learning for tabular data
Ronald Richman
M. Wüthrich
LMTD
FAtt
20
27
0
23 Jul 2021
A practical tutorial on Variational Bayes
Minh-Ngoc Tran
Trong-Nghia Nguyen
Viet-Hung Dao
BDL
29
38
0
01 Mar 2021
Assessment and adjustment of approximate inference algorithms using the law of total variance
Xue Yu
David J. Nott
Minh-Ngoc Tran
Nadja Klein
14
15
0
20 Nov 2019
Deep Integro-Difference Equation Models for Spatio-Temporal Forecasting
A. Zammit‐Mangion
C. Wikle
8
47
0
29 Oct 2019
Marginally-calibrated deep distributional regression
Nadja Klein
David J. Nott
M. Smith
UQCV
32
14
0
26 Aug 2019
Variational Particle Approximations
A. Saeedi
Tejas D. Kulkarni
Vikash K. Mansinghka
S. Gershman
82
60
0
24 Feb 2014
1