ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.09501
  4. Cited By
AutoAugment: Learning Augmentation Policies from Data

AutoAugment: Learning Augmentation Policies from Data

24 May 2018
E. D. Cubuk
Barret Zoph
Dandelion Mané
Vijay Vasudevan
Quoc V. Le
ArXivPDFHTML

Papers citing "AutoAugment: Learning Augmentation Policies from Data"

41 / 391 papers shown
Title
Generating All the Roads to Rome: Road Layout Randomization for Improved
  Road Marking Segmentation
Generating All the Roads to Rome: Road Layout Randomization for Improved Road Marking Segmentation
Tom Bruls
Horia Porav
Lars Kunze
Paul Newman
18
6
0
10 Jul 2019
Improving short text classification through global augmentation methods
Improving short text classification through global augmentation methods
Vukosi Marivate
T. Sefara
VLM
26
95
0
07 Jul 2019
Learning Data Augmentation Strategies for Object Detection
Learning Data Augmentation Strategies for Object Detection
Barret Zoph
E. D. Cubuk
Golnaz Ghiasi
Nayeon Lee
Jonathon Shlens
Quoc V. Le
39
523
0
26 Jun 2019
Fixing the train-test resolution discrepancy
Fixing the train-test resolution discrepancy
Hugo Touvron
Andrea Vedaldi
Matthijs Douze
Hervé Jégou
52
421
0
14 Jun 2019
Subspace Attack: Exploiting Promising Subspaces for Query-Efficient
  Black-box Attacks
Subspace Attack: Exploiting Promising Subspaces for Query-Efficient Black-box Attacks
Ziang Yan
Yiwen Guo
Changshui Zhang
AAML
30
110
0
11 Jun 2019
A Preliminary Study on Data Augmentation of Deep Learning for Image
  Classification
A Preliminary Study on Data Augmentation of Deep Learning for Image Classification
Benlin Hu
Cheng-Hsun Lei
Dong Wang
Shu Zhang
Zhenyu Chen
14
48
0
09 Jun 2019
Using learned optimizers to make models robust to input noise
Using learned optimizers to make models robust to input noise
Luke Metz
Niru Maheswaranathan
Jonathon Shlens
Jascha Narain Sohl-Dickstein
E. D. Cubuk
VLM
OOD
23
26
0
08 Jun 2019
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian
  Augmentation
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian Augmentation
Raphael Gontijo-Lopes
Dong Yin
Ben Poole
Justin Gilmer
E. D. Cubuk
AAML
33
204
0
06 Jun 2019
Achieving Generalizable Robustness of Deep Neural Networks by Stability
  Training
Achieving Generalizable Robustness of Deep Neural Networks by Stability Training
Jan Laermann
Wojciech Samek
Nils Strodthoff
OOD
32
15
0
03 Jun 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
11
17,761
0
28 May 2019
Improved Training Speed, Accuracy, and Data Utilization Through Loss
  Function Optimization
Improved Training Speed, Accuracy, and Data Utilization Through Loss Function Optimization
Santiago Gonzalez
Risto Miikkulainen
27
75
0
27 May 2019
Soft Contextual Data Augmentation for Neural Machine Translation
Soft Contextual Data Augmentation for Neural Machine Translation
Jinhua Zhu
Fei Gao
Lijun Wu
Yingce Xia
Tao Qin
Wen-gang Zhou
Xueqi Cheng
Tie-Yan Liu
27
125
0
25 May 2019
Data-Efficient Image Recognition with Contrastive Predictive Coding
Data-Efficient Image Recognition with Contrastive Predictive Coding
Olivier J. Hénaff
A. Srinivas
J. Fauw
Ali Razavi
Carl Doersch
S. M. Ali Eslami
Aaron van den Oord
SSL
58
1,417
0
22 May 2019
Billion-scale semi-supervised learning for image classification
Billion-scale semi-supervised learning for image classification
I. Z. Yalniz
Hervé Jégou
Kan Chen
Manohar Paluri
D. Mahajan
SSL
36
458
0
02 May 2019
A Survey on Face Data Augmentation
A Survey on Face Data Augmentation
Xiang Wang
Kai Wang
Kai Wang
CVBM
20
130
0
26 Apr 2019
Attention Augmented Convolutional Networks
Attention Augmented Convolutional Networks
Irwan Bello
Barret Zoph
Ashish Vaswani
Jonathon Shlens
Quoc V. Le
46
999
0
22 Apr 2019
HARK Side of Deep Learning -- From Grad Student Descent to Automated
  Machine Learning
HARK Side of Deep Learning -- From Grad Student Descent to Automated Machine Learning
O. Gencoglu
M. Gils
E. Guldogan
Chamin Morikawa
Mehmet Süzen
M. Gruber
J. Leinonen
H. Huttunen
11
36
0
16 Apr 2019
Deep Neural Network Ensembles
Deep Neural Network Ensembles
S. Tao
OOD
FaML
UQCV
24
37
0
11 Apr 2019
Addressing Model Vulnerability to Distributional Shifts over Image
  Transformation Sets
Addressing Model Vulnerability to Distributional Shifts over Image Transformation Sets
Riccardo Volpi
Vittorio Murino
39
29
0
28 Mar 2019
sharpDARTS: Faster and More Accurate Differentiable Architecture Search
sharpDARTS: Faster and More Accurate Differentiable Architecture Search
Andrew Hundt
Varun Jain
Gregory Hager
OOD
30
66
0
23 Mar 2019
Neural Packet Classification
Neural Packet Classification
Eric Liang
Hang Zhu
Xin Jin
Ion Stoica
OffRL
35
120
0
27 Feb 2019
MultiGrain: a unified image embedding for classes and instances
MultiGrain: a unified image embedding for classes and instances
Maxim Berman
Hervé Jégou
Andrea Vedaldi
Iasonas Kokkinos
Matthijs Douze
15
110
0
14 Feb 2019
Do ImageNet Classifiers Generalize to ImageNet?
Do ImageNet Classifiers Generalize to ImageNet?
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
OOD
SSeg
VLM
40
1,665
0
13 Feb 2019
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Nic Ford
Justin Gilmer
Nicholas Carlini
E. D. Cubuk
AAML
27
318
0
29 Jan 2019
Augment your batch: better training with larger batches
Augment your batch: better training with larger batches
Elad Hoffer
Tal Ben-Nun
Itay Hubara
Niv Giladi
Torsten Hoefler
Daniel Soudry
ODL
30
72
0
27 Jan 2019
See Better Before Looking Closer: Weakly Supervised Data Augmentation
  Network for Fine-Grained Visual Classification
See Better Before Looking Closer: Weakly Supervised Data Augmentation Network for Fine-Grained Visual Classification
Tao Hu
H. Qi
Qingming Huang
Yan Lu
19
231
0
26 Jan 2019
Training Neural Networks with Local Error Signals
Training Neural Networks with Local Error Signals
Arild Nøkland
L. Eidnes
32
226
0
20 Jan 2019
Accurate, Data-Efficient, Unconstrained Text Recognition with
  Convolutional Neural Networks
Accurate, Data-Efficient, Unconstrained Text Recognition with Convolutional Neural Networks
Mohamed Yousef
K. Hussain
U. S. Mohammed
3DV
26
124
0
31 Dec 2018
On the potential for open-endedness in neural networks
On the potential for open-endedness in neural networks
N. Guttenberg
N. Virgo
A. Penn
21
10
0
12 Dec 2018
Quantifying Generalization in Reinforcement Learning
Quantifying Generalization in Reinforcement Learning
K. Cobbe
Oleg Klimov
Christopher Hesse
Taehoon Kim
John Schulman
OffRL
51
659
0
06 Dec 2018
Skin Lesions Classification Using Convolutional Neural Networks in
  Clinical Images
Skin Lesions Classification Using Convolutional Neural Networks in Clinical Images
Danilo Barros Mendes
Nilton Correia da Silva
MedIm
22
46
0
06 Dec 2018
Data Augmentation using Random Image Cropping and Patching for Deep CNNs
Data Augmentation using Random Image Cropping and Patching for Deep CNNs
Ryo Takahashi
Takashi Matsubara
K. Uehara
28
326
0
22 Nov 2018
Efficient Augmentation via Data Subsampling
Efficient Augmentation via Data Subsampling
Michael Kuchnik
Virginia Smith
19
22
0
11 Oct 2018
Generative Adversarial Network in Medical Imaging: A Review
Generative Adversarial Network in Medical Imaging: A Review
Xin Yi
Ekta Walia
P. Babyn
GAN
MedIm
31
1,371
0
19 Sep 2018
Adapting Semantic Segmentation Models for Changes in Illumination and
  Camera Perspective
Adapting Semantic Segmentation Models for Changes in Illumination and Camera Perspective
W. Zhou
Alex Zyner
Stewart Worrall
E. Nebot
22
21
0
13 Sep 2018
Recent Advances in Object Detection in the Age of Deep Convolutional
  Neural Networks
Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks
Shivang Agarwal
Jean Ogier du Terrail
F. Jurie
ObjD
24
123
0
10 Sep 2018
Do Better ImageNet Models Transfer Better?
Do Better ImageNet Models Transfer Better?
Simon Kornblith
Jonathon Shlens
Quoc V. Le
OOD
MLT
91
1,310
0
23 May 2018
A Kernel Theory of Modern Data Augmentation
A Kernel Theory of Modern Data Augmentation
Tri Dao
Albert Gu
Alexander J. Ratner
Virginia Smith
Christopher De Sa
Christopher Ré
27
190
0
16 Mar 2018
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
81
26,062
0
05 Sep 2017
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
271
5,330
0
05 Nov 2016
RenderGAN: Generating Realistic Labeled Data
RenderGAN: Generating Realistic Labeled Data
Leon Sixt
Benjamin Wild
Tim Landgraf
GAN
170
176
0
04 Nov 2016
Previous
12345678