Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.08651
Cited By
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning
22 May 2018
Aapo Hyvarinen
Hiroaki Sasaki
Richard Turner
OOD
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning"
33 / 83 papers shown
Title
Unsupervised Learning of Compositional Energy Concepts
Yilun Du
Shuang Li
Yash Sharma
J. Tenenbaum
Igor Mordatch
CoGe
OCL
30
76
0
04 Nov 2021
Properties from Mechanisms: An Equivariance Perspective on Identifiable Representation Learning
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
34
38
0
29 Oct 2021
Discovery of Single Independent Latent Variable
Uri Shaham
Jonathan Svirsky
Ori Katz
Ronen Talmon
CML
28
2
0
12 Oct 2021
Learning Temporally Causal Latent Processes from General Temporal Data
Weiran Yao
Yuewen Sun
Alex Ho
Changyin Sun
Kun Zhang
BDL
CML
35
85
0
11 Oct 2021
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Pengzhou (Abel) Wu
Kenji Fukumizu
BDL
OOD
CML
30
3
0
30 Sep 2021
Identifiable Energy-based Representations: An Application to Estimating Heterogeneous Causal Effects
Yao Zhang
Jeroen Berrevoets
M. Schaar
CML
36
6
0
06 Aug 2021
Iterative Feature Matching: Toward Provable Domain Generalization with Logarithmic Environments
Yining Chen
Elan Rosenfeld
Mark Sellke
Tengyu Ma
Andrej Risteski
OOD
36
33
0
18 Jun 2021
Identifiability-Guaranteed Simplex-Structured Post-Nonlinear Mixture Learning via Autoencoder
Qi Lyu
Xiao Fu
CML
33
12
0
16 Jun 2021
Independent mechanism analysis, a new concept?
Luigi Gresele
Julius von Kügelgen
Vincent Stimper
Bernhard Schölkopf
M. Besserve
CML
23
100
0
09 Jun 2021
Learning disentangled representations via product manifold projection
Marco Fumero
Luca Cosmo
Simone Melzi
Emanuele Rodolà
CoGe
DRL
23
22
0
02 Mar 2021
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
238
211
0
17 Feb 2021
Causal Autoregressive Flows
Ilyes Khemakhem
R. Monti
R. Leech
Aapo Hyvarinen
CML
OOD
AI4CE
27
108
0
04 Nov 2020
Latent Causal Invariant Model
Xinwei Sun
Botong Wu
Xiangyu Zheng
Chang-Shu Liu
Wei Chen
Tao Qin
Tie-Yan Liu
OOD
CML
BDL
31
14
0
04 Nov 2020
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
35
80
0
27 Oct 2020
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
14
66
0
27 Oct 2020
Contrastive learning, multi-view redundancy, and linear models
Christopher Tosh
A. Krishnamurthy
Daniel J. Hsu
SSL
35
163
0
24 Aug 2020
Uncovering the structure of clinical EEG signals with self-supervised learning
Hubert J. Banville
O. Chehab
Aapo Hyvarinen
D. Engemann
Alexandre Gramfort
36
195
0
31 Jul 2020
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
48
132
0
21 Jul 2020
Time Series Source Separation with Slow Flows
Edouard Pineau
S. Razakarivony
Thomas Bonald
BDL
AI4TS
47
2
0
20 Jul 2020
Relative gradient optimization of the Jacobian term in unsupervised deep learning
Luigi Gresele
G. Fissore
Adrián Javaloy
Bernhard Schölkopf
Aapo Hyvarinen
DRL
19
22
0
26 Jun 2020
Independent Innovation Analysis for Nonlinear Vector Autoregressive Process
H. Morioka
Hermanni Hälvä
Aapo Hyvarinen
25
22
0
19 Jun 2020
On Disentangled Representations Learned From Correlated Data
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OOD
CML
29
115
0
14 Jun 2020
A theory of independent mechanisms for extrapolation in generative models
M. Besserve
Rémy Sun
Dominik Janzing
Bernhard Schölkopf
22
25
0
01 Apr 2020
Few-shot Domain Adaptation by Causal Mechanism Transfer
Takeshi Teshima
Issei Sato
Masashi Sugiyama
OOD
CML
TTA
33
86
0
10 Feb 2020
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
314
0
07 Feb 2020
Causal Mosaic: Cause-Effect Inference via Nonlinear ICA and Ensemble Method
Pengzhou (Abel) Wu
Kenji Fukumizu
CML
27
26
0
07 Jan 2020
Supervise Thyself: Examining Self-Supervised Representations in Interactive Environments
Evan Racah
C. Pal
SSL
27
2
0
27 Jun 2019
Explicit Disentanglement of Appearance and Perspective in Generative Models
N. Detlefsen
Søren Hauberg
CoGe
DRL
30
47
0
11 Jun 2019
Putting An End to End-to-End: Gradient-Isolated Learning of Representations
Sindy Löwe
Peter O'Connor
Bastiaan S. Veeling
SSL
14
143
0
28 May 2019
Disentangling Factors of Variation Using Few Labels
Francesco Locatello
Michael Tschannen
Stefan Bauer
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
DRL
CML
CoGe
34
123
0
03 May 2019
Time Series Source Separation using Dynamic Mode Decomposition
Arvind Prasadan
R. Nadakuditi
AI4TS
21
6
0
04 Mar 2019
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
Yoshua Bengio
T. Deleu
Nasim Rahaman
Nan Rosemary Ke
Sébastien Lachapelle
O. Bilaniuk
Anirudh Goyal
C. Pal
CML
OOD
48
332
0
30 Jan 2019
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness
Raphael Suter
Ðorðe Miladinovic
Bernhard Schölkopf
Stefan Bauer
CML
OOD
DRL
21
159
0
31 Oct 2018
Previous
1
2