Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.06826
Cited By
The Blessings of Multiple Causes
17 May 2018
Yixin Wang
David M. Blei
AI4CE
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Blessings of Multiple Causes"
38 / 38 papers shown
Title
Individualised Treatment Effects Estimation with Composite Treatments and Composite Outcomes
V. Chauhan
Lei A. Clifton
Gaurav Nigam
David A. Clifton
CML
63
0
0
12 Feb 2025
Substitute adjustment via recovery of latent variables
Jeffrey Adams
Niels Richard Hansen
CML
24
1
0
01 Mar 2024
Instrumental Variable Estimation for Causal Inference in Longitudinal Data with Time-Dependent Latent Confounders
Debo Cheng
Ziqi Xu
Jiuyong Li
Lin Liu
Jixue Liu
Wentao Gao
T. Le
CML
38
6
0
12 Dec 2023
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CML
OOD
68
2
0
16 Oct 2023
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding
Alizée Pace
Hugo Yèche
Bernhard Schölkopf
Gunnar Rätsch
Guy Tennenholtz
OffRL
16
6
0
01 Jun 2023
Estimating Treatment Effects in Continuous Time with Hidden Confounders
Defu Cao
James Enouen
Yong-Jin Liu
CML
35
2
0
19 Feb 2023
Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations
Nabeel Seedat
F. Imrie
Alexis Bellot
Zhaozhi Qian
M. Schaar
OOD
CML
29
52
0
16 Jun 2022
Causal Inference from Small High-dimensional Datasets
Raquel Y. S. Aoki
Martin Ester
CML
21
4
0
19 May 2022
Hybrid Feature- and Similarity-Based Models for Joint Prediction and Interpretation
Jacqueline K. Kueper
J. Rayner
D. Lizotte
13
2
0
12 Apr 2022
Scientometric Review of Artificial Intelligence for Operations & Maintenance of Wind Turbines: The Past, Present and Future
Joyjit Chatterjee
Nina Dethlefs
26
83
0
30 Mar 2022
Estimating Social Influence from Observational Data
Dhanya Sridhar
Caterina De Bacco
David M. Blei
19
3
0
24 Mar 2022
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects
Tobias Hatt
Jeroen Berrevoets
Alicia Curth
Stefan Feuerriegel
M. Schaar
CML
47
29
0
25 Feb 2022
Correcting Confounding via Random Selection of Background Variables
You-Lin Chen
Lenon Minorics
Dominik Janzing
CML
27
4
0
04 Feb 2022
Deep Causal Reasoning for Recommendations
Yaochen Zhu
Jing Yi
Jiayi Xie
Zhenzhong Chen
CML
BDL
27
10
0
06 Jan 2022
Multi-treatment Effect Estimation from Biomedical Data
Raquel Y. S. Aoki
Yizhou Chen
M. Ester
13
0
0
14 Dec 2021
Causal Knowledge Guided Societal Event Forecasting
Songgaojun Deng
Huzefa Rangwala
Yue Ning
AI4TS
24
2
0
10 Dec 2021
Identifiable Generative Models for Missing Not at Random Data Imputation
Chao Ma
Cheng Zhang
28
34
0
27 Oct 2021
Deconfounded Causal Collaborative Filtering
Shuyuan Xu
Juntao Tan
Shelby Heinecke
Jia Li
Yongfeng Zhang
CML
35
40
0
14 Oct 2021
Effects of Multi-Aspect Online Reviews with Unobserved Confounders: Estimation and Implication
Lu Cheng
Ruocheng Guo
K. S. Candan
Huan Liu
CML
21
6
0
04 Oct 2021
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Pengzhou (Abel) Wu
Kenji Fukumizu
BDL
OOD
CML
27
3
0
30 Sep 2021
Desiderata for Representation Learning: A Causal Perspective
Yixin Wang
Michael I. Jordan
CML
32
80
0
08 Sep 2021
DoGR: Disaggregated Gaussian Regression for Reproducible Analysis of Heterogeneous Data
N. Alipourfard
Keith Burghardt
Kristina Lerman
14
0
0
31 Aug 2021
Sample Observed Effects: Enumeration, Randomization and Generalization
Andre F. Ribeiro
CML
16
4
0
09 Aug 2021
Obtaining Causal Information by Merging Datasets with MAXENT
Sergio Hernan Garrido Mejia
Elke Kirschbaum
Dominik Janzing
CML
18
9
0
15 Jul 2021
Counterfactual Explanations for Arbitrary Regression Models
Thomas Spooner
Danial Dervovic
Jason Long
Jon Shepard
Jiahao Chen
Daniele Magazzeni
24
26
0
29 Jun 2021
What can the millions of random treatments in nonexperimental data reveal about causes?
Andre F. Ribeiro
Frank Neffke
Ricardo Hausmann
CML
20
1
0
03 May 2021
The Blessings of Unlabeled Background in Untrimmed Videos
Yuan Liu
Jingyuan Chen
Zhenfang Chen
Bing Deng
Jianqiang Huang
Hanwang Zhang
CML
31
43
0
24 Mar 2021
NCoRE: Neural Counterfactual Representation Learning for Combinations of Treatments
S. Parbhoo
Stefan Bauer
Patrick Schwab
CML
BDL
11
16
0
20 Mar 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
37
296
0
03 Mar 2021
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CML
OODD
OOD
35
104
0
03 Nov 2020
Naïve regression requires weaker assumptions than factor models to adjust for multiple cause confounding
Justin Grimmer
D. Knox
Brandon M Stewart
CML
8
12
0
24 Jul 2020
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach
Amir-Hossein Karimi
Julius von Kügelgen
Bernhard Schölkopf
Isabel Valera
CML
28
178
0
11 Jun 2020
Ivy: Instrumental Variable Synthesis for Causal Inference
Zhaobin Kuang
Frederic Sala
N. Sohoni
Sen Wu
A. Córdova-Palomera
Jared A. Dunnmon
J. Priest
Christopher Ré
CML
11
26
0
11 Apr 2020
Adapting Text Embeddings for Causal Inference
Victor Veitch
Dhanya Sridhar
David M. Blei
CML
9
21
0
29 May 2019
The Medical Deconfounder: Assessing Treatment Effects with Electronic Health Records
Linying Zhang
Yixin Wang
A. Ostropolets
J. J. Mulgrave
David M. Blei
G. Hripcsak
BDL
CML
15
1
0
03 Apr 2019
On Multi-Cause Causal Inference with Unobserved Confounding: Counterexamples, Impossibility, and Alternatives
Alexander DÁmour
CML
14
41
0
27 Feb 2019
Using Embeddings to Correct for Unobserved Confounding in Networks
Victor Veitch
Yixin Wang
David M. Blei
CML
13
56
0
11 Feb 2019
Structural Agnostic Modeling: Adversarial Learning of Causal Graphs
Diviyan Kalainathan
Olivier Goudet
Isabelle M Guyon
David Lopez-Paz
Michèle Sebag
CML
24
93
0
13 Mar 2018
1