ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.06826
  4. Cited By
The Blessings of Multiple Causes

The Blessings of Multiple Causes

17 May 2018
Yixin Wang
David M. Blei
    AI4CE
    CML
ArXivPDFHTML

Papers citing "The Blessings of Multiple Causes"

38 / 38 papers shown
Title
Individualised Treatment Effects Estimation with Composite Treatments and Composite Outcomes
Individualised Treatment Effects Estimation with Composite Treatments and Composite Outcomes
V. Chauhan
Lei A. Clifton
Gaurav Nigam
David A. Clifton
CML
63
0
0
12 Feb 2025
Substitute adjustment via recovery of latent variables
Substitute adjustment via recovery of latent variables
Jeffrey Adams
Niels Richard Hansen
CML
24
1
0
01 Mar 2024
Instrumental Variable Estimation for Causal Inference in Longitudinal
  Data with Time-Dependent Latent Confounders
Instrumental Variable Estimation for Causal Inference in Longitudinal Data with Time-Dependent Latent Confounders
Debo Cheng
Ziqi Xu
Jiuyong Li
Lin Liu
Jixue Liu
Wentao Gao
T. Le
CML
38
6
0
12 Dec 2023
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CML
OOD
68
2
0
16 Oct 2023
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden
  Confounding
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding
Alizée Pace
Hugo Yèche
Bernhard Schölkopf
Gunnar Rätsch
Guy Tennenholtz
OffRL
16
6
0
01 Jun 2023
Estimating Treatment Effects in Continuous Time with Hidden Confounders
Estimating Treatment Effects in Continuous Time with Hidden Confounders
Defu Cao
James Enouen
Yong-Jin Liu
CML
35
2
0
19 Feb 2023
Continuous-Time Modeling of Counterfactual Outcomes Using Neural
  Controlled Differential Equations
Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations
Nabeel Seedat
F. Imrie
Alexis Bellot
Zhaozhi Qian
M. Schaar
OOD
CML
29
52
0
16 Jun 2022
Causal Inference from Small High-dimensional Datasets
Causal Inference from Small High-dimensional Datasets
Raquel Y. S. Aoki
Martin Ester
CML
21
4
0
19 May 2022
Hybrid Feature- and Similarity-Based Models for Joint Prediction and
  Interpretation
Hybrid Feature- and Similarity-Based Models for Joint Prediction and Interpretation
Jacqueline K. Kueper
J. Rayner
D. Lizotte
13
2
0
12 Apr 2022
Scientometric Review of Artificial Intelligence for Operations &
  Maintenance of Wind Turbines: The Past, Present and Future
Scientometric Review of Artificial Intelligence for Operations & Maintenance of Wind Turbines: The Past, Present and Future
Joyjit Chatterjee
Nina Dethlefs
26
83
0
30 Mar 2022
Estimating Social Influence from Observational Data
Estimating Social Influence from Observational Data
Dhanya Sridhar
Caterina De Bacco
David M. Blei
19
3
0
24 Mar 2022
Combining Observational and Randomized Data for Estimating Heterogeneous
  Treatment Effects
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects
Tobias Hatt
Jeroen Berrevoets
Alicia Curth
Stefan Feuerriegel
M. Schaar
CML
47
29
0
25 Feb 2022
Correcting Confounding via Random Selection of Background Variables
Correcting Confounding via Random Selection of Background Variables
You-Lin Chen
Lenon Minorics
Dominik Janzing
CML
27
4
0
04 Feb 2022
Deep Causal Reasoning for Recommendations
Deep Causal Reasoning for Recommendations
Yaochen Zhu
Jing Yi
Jiayi Xie
Zhenzhong Chen
CML
BDL
27
10
0
06 Jan 2022
Multi-treatment Effect Estimation from Biomedical Data
Multi-treatment Effect Estimation from Biomedical Data
Raquel Y. S. Aoki
Yizhou Chen
M. Ester
13
0
0
14 Dec 2021
Causal Knowledge Guided Societal Event Forecasting
Causal Knowledge Guided Societal Event Forecasting
Songgaojun Deng
Huzefa Rangwala
Yue Ning
AI4TS
24
2
0
10 Dec 2021
Identifiable Generative Models for Missing Not at Random Data Imputation
Identifiable Generative Models for Missing Not at Random Data Imputation
Chao Ma
Cheng Zhang
28
34
0
27 Oct 2021
Deconfounded Causal Collaborative Filtering
Deconfounded Causal Collaborative Filtering
Shuyuan Xu
Juntao Tan
Shelby Heinecke
Jia Li
Yongfeng Zhang
CML
35
40
0
14 Oct 2021
Effects of Multi-Aspect Online Reviews with Unobserved Confounders:
  Estimation and Implication
Effects of Multi-Aspect Online Reviews with Unobserved Confounders: Estimation and Implication
Lu Cheng
Ruocheng Guo
K. S. Candan
Huan Liu
CML
21
6
0
04 Oct 2021
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Pengzhou (Abel) Wu
Kenji Fukumizu
BDL
OOD
CML
27
3
0
30 Sep 2021
Desiderata for Representation Learning: A Causal Perspective
Desiderata for Representation Learning: A Causal Perspective
Yixin Wang
Michael I. Jordan
CML
32
80
0
08 Sep 2021
DoGR: Disaggregated Gaussian Regression for Reproducible Analysis of
  Heterogeneous Data
DoGR: Disaggregated Gaussian Regression for Reproducible Analysis of Heterogeneous Data
N. Alipourfard
Keith Burghardt
Kristina Lerman
14
0
0
31 Aug 2021
Sample Observed Effects: Enumeration, Randomization and Generalization
Sample Observed Effects: Enumeration, Randomization and Generalization
Andre F. Ribeiro
CML
16
4
0
09 Aug 2021
Obtaining Causal Information by Merging Datasets with MAXENT
Obtaining Causal Information by Merging Datasets with MAXENT
Sergio Hernan Garrido Mejia
Elke Kirschbaum
Dominik Janzing
CML
18
9
0
15 Jul 2021
Counterfactual Explanations for Arbitrary Regression Models
Counterfactual Explanations for Arbitrary Regression Models
Thomas Spooner
Danial Dervovic
Jason Long
Jon Shepard
Jiahao Chen
Daniele Magazzeni
24
26
0
29 Jun 2021
What can the millions of random treatments in nonexperimental data
  reveal about causes?
What can the millions of random treatments in nonexperimental data reveal about causes?
Andre F. Ribeiro
Frank Neffke
Ricardo Hausmann
CML
20
1
0
03 May 2021
The Blessings of Unlabeled Background in Untrimmed Videos
The Blessings of Unlabeled Background in Untrimmed Videos
Yuan Liu
Jingyuan Chen
Zhenfang Chen
Bing Deng
Jianqiang Huang
Hanwang Zhang
CML
31
43
0
24 Mar 2021
NCoRE: Neural Counterfactual Representation Learning for Combinations of
  Treatments
NCoRE: Neural Counterfactual Representation Learning for Combinations of Treatments
S. Parbhoo
Stefan Bauer
Patrick Schwab
CML
BDL
11
16
0
20 Mar 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
37
296
0
03 Mar 2021
Learning Causal Semantic Representation for Out-of-Distribution
  Prediction
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CML
OODD
OOD
35
104
0
03 Nov 2020
Naïve regression requires weaker assumptions than factor models to
  adjust for multiple cause confounding
Naïve regression requires weaker assumptions than factor models to adjust for multiple cause confounding
Justin Grimmer
D. Knox
Brandon M Stewart
CML
8
12
0
24 Jul 2020
Algorithmic recourse under imperfect causal knowledge: a probabilistic
  approach
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach
Amir-Hossein Karimi
Julius von Kügelgen
Bernhard Schölkopf
Isabel Valera
CML
28
178
0
11 Jun 2020
Ivy: Instrumental Variable Synthesis for Causal Inference
Ivy: Instrumental Variable Synthesis for Causal Inference
Zhaobin Kuang
Frederic Sala
N. Sohoni
Sen Wu
A. Córdova-Palomera
Jared A. Dunnmon
J. Priest
Christopher Ré
CML
11
26
0
11 Apr 2020
Adapting Text Embeddings for Causal Inference
Adapting Text Embeddings for Causal Inference
Victor Veitch
Dhanya Sridhar
David M. Blei
CML
9
21
0
29 May 2019
The Medical Deconfounder: Assessing Treatment Effects with Electronic
  Health Records
The Medical Deconfounder: Assessing Treatment Effects with Electronic Health Records
Linying Zhang
Yixin Wang
A. Ostropolets
J. J. Mulgrave
David M. Blei
G. Hripcsak
BDL
CML
15
1
0
03 Apr 2019
On Multi-Cause Causal Inference with Unobserved Confounding:
  Counterexamples, Impossibility, and Alternatives
On Multi-Cause Causal Inference with Unobserved Confounding: Counterexamples, Impossibility, and Alternatives
Alexander DÁmour
CML
14
41
0
27 Feb 2019
Using Embeddings to Correct for Unobserved Confounding in Networks
Using Embeddings to Correct for Unobserved Confounding in Networks
Victor Veitch
Yixin Wang
David M. Blei
CML
13
56
0
11 Feb 2019
Structural Agnostic Modeling: Adversarial Learning of Causal Graphs
Structural Agnostic Modeling: Adversarial Learning of Causal Graphs
Diviyan Kalainathan
Olivier Goudet
Isabelle M Guyon
David Lopez-Paz
Michèle Sebag
CML
24
93
0
13 Mar 2018
1