ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.06230
  4. Cited By
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class
  Models

Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models

16 May 2018
Jacob R. Kauffmann
K. Müller
G. Montavon
    DRL
ArXivPDFHTML

Papers citing "Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models"

17 / 17 papers shown
Title
On Root Cause Localization and Anomaly Mitigation through Causal
  Inference
On Root Cause Localization and Anomaly Mitigation through Causal Inference
Xiao Han
Lu Zhang
Yongkai Wu
Shuhan Yuan
26
7
0
08 Dec 2022
Explaining Anomalies using Denoising Autoencoders for Financial Tabular
  Data
Explaining Anomalies using Denoising Autoencoders for Financial Tabular Data
Timur Sattarov
Dayananda Herurkar
Jörn Hees
30
8
0
21 Sep 2022
A general-purpose method for applying Explainable AI for Anomaly
  Detection
A general-purpose method for applying Explainable AI for Anomaly Detection
John Sipple
Abdou Youssef
27
14
0
23 Jul 2022
Explainable Intrusion Detection Systems (X-IDS): A Survey of Current
  Methods, Challenges, and Opportunities
Explainable Intrusion Detection Systems (X-IDS): A Survey of Current Methods, Challenges, and Opportunities
Subash Neupane
Jesse Ables
William Anderson
Sudip Mittal
Shahram Rahimi
I. Banicescu
Maria Seale
AAML
50
71
0
13 Jul 2022
Self-Supervised Training with Autoencoders for Visual Anomaly Detection
Self-Supervised Training with Autoencoders for Visual Anomaly Detection
Alexander Bauer
Shinichi Nakajima
Klaus-Robert Müller
21
9
0
23 Jun 2022
Toward Explainable AI for Regression Models
Toward Explainable AI for Regression Models
S. Letzgus
Patrick Wagner
Jonas Lederer
Wojciech Samek
Klaus-Robert Muller
G. Montavon
XAI
30
63
0
21 Dec 2021
DeepAID: Interpreting and Improving Deep Learning-based Anomaly
  Detection in Security Applications
DeepAID: Interpreting and Improving Deep Learning-based Anomaly Detection in Security Applications
Dongqi Han
Zhiliang Wang
Wenqi Chen
Ying Zhong
Su Wang
Han Zhang
Jiahai Yang
Xingang Shi
Xia Yin
AAML
21
76
0
23 Sep 2021
This looks more like that: Enhancing Self-Explaining Models by
  Prototypical Relevance Propagation
This looks more like that: Enhancing Self-Explaining Models by Prototypical Relevance Propagation
Srishti Gautam
Marina M.-C. Höhne
Stine Hansen
Robert Jenssen
Michael C. Kampffmeyer
27
49
0
27 Aug 2021
Towards Robust Explanations for Deep Neural Networks
Towards Robust Explanations for Deep Neural Networks
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
21
63
0
18 Dec 2020
Counterfactual Explanation Based on Gradual Construction for Deep
  Networks
Counterfactual Explanation Based on Gradual Construction for Deep Networks
Hong G Jung
Sin-Han Kang
Hee-Dong Kim
Dong-Ok Won
Seong-Whan Lee
OOD
FAtt
19
22
0
05 Aug 2020
How Much Can I Trust You? -- Quantifying Uncertainties in Explaining
  Neural Networks
How Much Can I Trust You? -- Quantifying Uncertainties in Explaining Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Klaus-Robert Muller
Shinichi Nakajima
Marius Kloft
UQCV
FAtt
27
31
0
16 Jun 2020
Rethinking Assumptions in Deep Anomaly Detection
Rethinking Assumptions in Deep Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Klaus-Robert Muller
Marius Kloft
14
89
0
30 May 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
44
82
0
17 Mar 2020
Towards Explainable Artificial Intelligence
Towards Explainable Artificial Intelligence
Wojciech Samek
K. Müller
XAI
32
436
0
26 Sep 2019
Explaining Anomalies Detected by Autoencoders Using SHAP
Explaining Anomalies Detected by Autoencoders Using SHAP
Liat Antwarg
Ronnie Mindlin Miller
Bracha Shapira
Lior Rokach
FAtt
TDI
16
86
0
06 Mar 2019
Unsupervised Detection and Explanation of Latent-class Contextual
  Anomalies
Unsupervised Detection and Explanation of Latent-class Contextual Anomalies
Jacob R. Kauffmann
G. Montavon
L. A. Lima
Shinichi Nakajima
K. Müller
Nico Görnitz
13
0
0
29 Jun 2018
Classifying and Segmenting Microscopy Images Using Convolutional
  Multiple Instance Learning
Classifying and Segmenting Microscopy Images Using Convolutional Multiple Instance Learning
Oren Z. Kraus
Lei Jimmy Ba
B. Frey
164
392
0
17 Nov 2015
1