Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.06230
Cited By
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models
16 May 2018
Jacob R. Kauffmann
K. Müller
G. Montavon
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models"
17 / 17 papers shown
Title
On Root Cause Localization and Anomaly Mitigation through Causal Inference
Xiao Han
Lu Zhang
Yongkai Wu
Shuhan Yuan
26
7
0
08 Dec 2022
Explaining Anomalies using Denoising Autoencoders for Financial Tabular Data
Timur Sattarov
Dayananda Herurkar
Jörn Hees
30
8
0
21 Sep 2022
A general-purpose method for applying Explainable AI for Anomaly Detection
John Sipple
Abdou Youssef
27
14
0
23 Jul 2022
Explainable Intrusion Detection Systems (X-IDS): A Survey of Current Methods, Challenges, and Opportunities
Subash Neupane
Jesse Ables
William Anderson
Sudip Mittal
Shahram Rahimi
I. Banicescu
Maria Seale
AAML
50
71
0
13 Jul 2022
Self-Supervised Training with Autoencoders for Visual Anomaly Detection
Alexander Bauer
Shinichi Nakajima
Klaus-Robert Müller
21
9
0
23 Jun 2022
Toward Explainable AI for Regression Models
S. Letzgus
Patrick Wagner
Jonas Lederer
Wojciech Samek
Klaus-Robert Muller
G. Montavon
XAI
30
63
0
21 Dec 2021
DeepAID: Interpreting and Improving Deep Learning-based Anomaly Detection in Security Applications
Dongqi Han
Zhiliang Wang
Wenqi Chen
Ying Zhong
Su Wang
Han Zhang
Jiahai Yang
Xingang Shi
Xia Yin
AAML
21
76
0
23 Sep 2021
This looks more like that: Enhancing Self-Explaining Models by Prototypical Relevance Propagation
Srishti Gautam
Marina M.-C. Höhne
Stine Hansen
Robert Jenssen
Michael C. Kampffmeyer
27
49
0
27 Aug 2021
Towards Robust Explanations for Deep Neural Networks
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
21
63
0
18 Dec 2020
Counterfactual Explanation Based on Gradual Construction for Deep Networks
Hong G Jung
Sin-Han Kang
Hee-Dong Kim
Dong-Ok Won
Seong-Whan Lee
OOD
FAtt
19
22
0
05 Aug 2020
How Much Can I Trust You? -- Quantifying Uncertainties in Explaining Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Klaus-Robert Muller
Shinichi Nakajima
Marius Kloft
UQCV
FAtt
27
31
0
16 Jun 2020
Rethinking Assumptions in Deep Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Klaus-Robert Muller
Marius Kloft
14
89
0
30 May 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
44
82
0
17 Mar 2020
Towards Explainable Artificial Intelligence
Wojciech Samek
K. Müller
XAI
32
436
0
26 Sep 2019
Explaining Anomalies Detected by Autoencoders Using SHAP
Liat Antwarg
Ronnie Mindlin Miller
Bracha Shapira
Lior Rokach
FAtt
TDI
16
86
0
06 Mar 2019
Unsupervised Detection and Explanation of Latent-class Contextual Anomalies
Jacob R. Kauffmann
G. Montavon
L. A. Lima
Shinichi Nakajima
K. Müller
Nico Görnitz
13
0
0
29 Jun 2018
Classifying and Segmenting Microscopy Images Using Convolutional Multiple Instance Learning
Oren Z. Kraus
Lei Jimmy Ba
B. Frey
164
392
0
17 Nov 2015
1