Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.09893
Cited By
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees
26 April 2018
H. Avron
Michael Kapralov
Cameron Musco
Christopher Musco
A. Velingker
A. Zandieh
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees"
45 / 95 papers shown
Title
Revisiting the Sample Complexity of Sparse Spectrum Approximation of Gaussian Processes
Q. Hoang
T. Hoang
Hai Pham
David P. Woodruff
6
5
0
17 Nov 2020
Towards a Unified Quadrature Framework for Large-Scale Kernel Machines
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
8
4
0
03 Nov 2020
Kernel regression in high dimensions: Refined analysis beyond double descent
Fanghui Liu
Zhenyu Liao
Johan A. K. Suykens
6
49
0
06 Oct 2020
Generalized Leverage Score Sampling for Neural Networks
J. Lee
Ruoqi Shen
Zhao-quan Song
Mengdi Wang
Zheng Yu
21
42
0
21 Sep 2020
Benign Overfitting and Noisy Features
Zhu Li
Weijie Su
Dino Sejdinovic
10
22
0
06 Aug 2020
Decentralised Learning with Random Features and Distributed Gradient Descent
Dominic Richards
Patrick Rebeschini
Lorenzo Rosasco
11
18
0
01 Jul 2020
Training (Overparametrized) Neural Networks in Near-Linear Time
Jan van den Brand
Binghui Peng
Zhao-quan Song
Omri Weinstein
ODL
21
81
0
20 Jun 2020
The Statistical Cost of Robust Kernel Hyperparameter Tuning
R. A. Meyer
Christopher Musco
16
2
0
14 Jun 2020
Fourier Sparse Leverage Scores and Approximate Kernel Learning
T. Erdélyi
Cameron Musco
Christopher Musco
8
21
0
12 Jun 2020
A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian Kernel, a Precise Phase Transition, and the Corresponding Double Descent
Zhenyu Liao
Romain Couillet
Michael W. Mahoney
16
88
0
09 Jun 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
44
172
0
23 Apr 2020
Learning with Optimized Random Features: Exponential Speedup by Quantum Machine Learning without Sparsity and Low-Rank Assumptions
H. Yamasaki
Sathyawageeswar Subramanian
Sho Sonoda
M. Koashi
30
17
0
22 Apr 2020
An Improved Cutting Plane Method for Convex Optimization, Convex-Concave Games and its Applications
Haotian Jiang
Y. Lee
Zhao-quan Song
Sam Chiu-wai Wong
14
106
0
08 Apr 2020
How Good are Low-Rank Approximations in Gaussian Process Regression?
C. Daskalakis
P. Dellaportas
A. Panos
9
3
0
03 Apr 2020
Scaling up Kernel Ridge Regression via Locality Sensitive Hashing
Michael Kapralov
Navid Nouri
Ilya P. Razenshteyn
A. Velingker
A. Zandieh
24
13
0
21 Mar 2020
Modeling of Spatio-Temporal Hawkes Processes with Randomized Kernels
Fatih Ilhan
Suleyman Serdar Kozat
6
7
0
07 Mar 2020
Convolutional Spectral Kernel Learning
Jian Li
Yong Liu
Weiping Wang
BDL
4
5
0
28 Feb 2020
Sparse Recovery With Non-Linear Fourier Features
Ayça Özçelikkale
6
5
0
12 Feb 2020
RFN: A Random-Feature Based Newton Method for Empirical Risk Minimization in Reproducing Kernel Hilbert Spaces
Ting-Jui Chang
Shahin Shahrampour
12
2
0
12 Feb 2020
Generalization Guarantees for Sparse Kernel Approximation with Entropic Optimal Features
Liang Ding
Rui Tuo
Shahin Shahrampour
9
8
0
11 Feb 2020
COKE: Communication-Censored Decentralized Kernel Learning
Ping Xu
Yue Wang
Xiang Chen
Z. Tian
15
20
0
28 Jan 2020
Random Fourier Features via Fast Surrogate Leverage Weighted Sampling
Fanghui Liu
Xiaolin Huang
Yudong Chen
Jie Yang
Johan A. K. Suykens
19
21
0
20 Nov 2019
Exponential Convergence Rates of Classification Errors on Learning with SGD and Random Features
Shingo Yashima
Atsushi Nitanda
Taiji Suzuki
6
2
0
13 Nov 2019
word2ket: Space-efficient Word Embeddings inspired by Quantum Entanglement
Ali (Aliakbar) Panahi
Seyran Saeedi
Tom Arodz
6
29
0
12 Nov 2019
Importance Sampling via Local Sensitivity
Anant Raj
Cameron Musco
Lester W. Mackey
10
6
0
04 Nov 2019
Gaussian Processes with Errors in Variables: Theory and Computation
Shuang Zhou
D. Pati
Tianying Wang
Yun Yang
R. Carroll
16
3
0
14 Oct 2019
ORCCA: Optimal Randomized Canonical Correlation Analysis
Yinsong Wang
Shahin Shahrampour
6
5
0
11 Oct 2019
Simple and Almost Assumption-Free Out-of-Sample Bound for Random Feature Mapping
Shusen Wang
23
2
0
24 Sep 2019
On the Downstream Performance of Compressed Word Embeddings
Avner May
Jian Zhang
Tri Dao
Christopher Ré
19
27
0
03 Sep 2019
Statistical and Computational Trade-Offs in Kernel K-Means
Daniele Calandriello
Lorenzo Rosasco
11
32
0
27 Aug 2019
Sample Efficient Toeplitz Covariance Estimation
Yonina C. Eldar
Jerry Li
Cameron Musco
Christopher Musco
12
13
0
14 May 2019
On Sampling Random Features From Empirical Leverage Scores: Implementation and Theoretical Guarantees
Shahin Shahrampour
Soheil Kolouri
6
10
0
20 Mar 2019
Spatial Analysis Made Easy with Linear Regression and Kernels
Philip Milton
E. Giorgi
Samir Bhatt
24
16
0
22 Feb 2019
On Random Subsampling of Gaussian Process Regression: A Graphon-Based Analysis
K. Hayashi
Masaaki Imaizumi
Yuichi Yoshida
17
12
0
28 Jan 2019
A Universal Sampling Method for Reconstructing Signals with Simple Fourier Transforms
H. Avron
Michael Kapralov
Cameron Musco
Christopher Musco
A. Velingker
A. Zandieh
17
47
0
20 Dec 2018
The GaussianSketch for Almost Relative Error Kernel Distance
J. M. Phillips
W. Tai
17
1
0
09 Nov 2018
Low-Precision Random Fourier Features for Memory-Constrained Kernel Approximation
Jian Zhang
Avner May
Tri Dao
Christopher Ré
11
29
0
31 Oct 2018
Data-dependent compression of random features for large-scale kernel approximation
Raj Agrawal
Trevor Campbell
Jonathan H. Huggins
Tamara Broderick
11
20
0
09 Oct 2018
Generalization Properties of hyper-RKHS and its Applications
Fanghui Liu
Lei Shi
Xiaolin Huang
Jie-jin Yang
Johan A. K. Suykens
13
4
0
26 Sep 2018
Towards A Unified Analysis of Random Fourier Features
Zhu Li
Jean-François Ton
Dino Oglic
Dino Sejdinovic
16
5
0
24 Jun 2018
Optimal Sketching Bounds for Exp-concave Stochastic Minimization
Naman Agarwal
Alon Gonen
17
0
0
21 May 2018
Active Regression via Linear-Sample Sparsification
Xue Chen
Eric Price
24
61
0
27 Nov 2017
Spatial Mapping with Gaussian Processes and Nonstationary Fourier Features
Jean-François Ton
Seth Flaxman
Dino Sejdinovic
Samir Bhatt
GP
31
52
0
15 Nov 2017
Is Input Sparsity Time Possible for Kernel Low-Rank Approximation?
Cameron Musco
David P. Woodruff
20
13
0
05 Nov 2017
Sharp analysis of low-rank kernel matrix approximations
Francis R. Bach
86
277
0
09 Aug 2012
Previous
1
2