Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.09893
Cited By
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees
26 April 2018
H. Avron
Michael Kapralov
Cameron Musco
Christopher Musco
A. Velingker
A. Zandieh
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees"
50 / 95 papers shown
Title
Tensor Sketch: Fast and Scalable Polynomial Kernel Approximation
Ninh Pham
Rasmus Pagh
27
0
0
13 May 2025
Randomized Quasi-Monte Carlo Features for Kernel Approximation
Y. Huang
Zhen Huang
68
0
0
08 Mar 2025
Kernel Approximation using Analog In-Memory Computing
Julian Büchel
Giacomo Camposampiero
A. Vasilopoulos
Corey Lammie
Manuel Le Gallo
Abbas Rahimi
Abu Sebastian
55
0
0
05 Nov 2024
An Online Learning Approach to Prompt-based Selection of Generative Models
Xiaoyan Hu
Ho-fung Leung
Farzan Farnia
38
2
0
17 Oct 2024
Random Features Approximation for Control-Affine Systems
Kimia Kazemian
Yahya Sattar
Sarah Dean
70
1
0
10 Jun 2024
Variance-Reducing Couplings for Random Features: Perspectives from Optimal Transport
Isaac Reid
Stratis Markou
Krzysztof Choromanski
Richard E. Turner
Adrian Weller
27
1
0
26 May 2024
Sketch and shift: a robust decoder for compressive clustering
Ayoub Belhadji
Rémi Gribonval
19
1
0
15 Dec 2023
A unified framework for learning with nonlinear model classes from arbitrary linear samples
Ben Adcock
Juan M. Cardenas
N. Dexter
31
3
0
25 Nov 2023
Improved Active Learning via Dependent Leverage Score Sampling
Atsushi Shimizu
Xiaoou Cheng
Chris Musco
Jonathan Weare
FedML
13
5
0
08 Oct 2023
CS4ML: A general framework for active learning with arbitrary data based on Christoffel functions
Ben Adcock
Juan M. Cardenas
N. Dexter
24
6
0
01 Jun 2023
On the Size and Approximation Error of Distilled Sets
Alaa Maalouf
M. Tukan
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
34
4
0
23 May 2023
Quasi-Monte Carlo Graph Random Features
Isaac Reid
K. Choromanski
Adrian Weller
11
8
0
21 May 2023
HPN: Personalized Federated Hyperparameter Optimization
Anda Cheng
Zhen Wang
Yaliang Li
Jianwei Cheng
27
1
0
11 Apr 2023
Error Estimation for Random Fourier Features
Ju Yao
N. Benjamin Erichson
Miles E. Lopes
27
6
0
22 Feb 2023
Learning a Fourier Transform for Linear Relative Positional Encodings in Transformers
K. Choromanski
Shanda Li
Valerii Likhosherstov
Kumar Avinava Dubey
Shengjie Luo
Di He
Yiming Yang
Tamás Sarlós
Thomas Weingarten
Adrian Weller
37
8
0
03 Feb 2023
Efficient Graph Field Integrators Meet Point Clouds
K. Choromanski
Arijit Sehanobish
Han Lin
Yunfan Zhao
Eli Berger
...
Kumar Avinava Dubey
Deepali Jain
Tamás Sarlós
Snigdha Chaturvedi
Adrian Weller
15
5
0
02 Feb 2023
FAVOR#: Sharp Attention Kernel Approximations via New Classes of Positive Random Features
Valerii Likhosherstov
K. Choromanski
Kumar Avinava Dubey
Frederick Liu
Tamás Sarlós
Adrian Weller
18
3
0
01 Feb 2023
A Distribution Free Truncated Kernel Ridge Regression Estimator and Related Spectral Analyses
Asma Ben Saber
Abderrazek Karoui
13
1
0
17 Jan 2023
Localized Contrastive Learning on Graphs
Hengrui Zhang
Qitian Wu
Yu Wang
Shaofeng Zhang
Junchi Yan
Philip S. Yu
22
9
0
08 Dec 2022
RFFNet: Large-Scale Interpretable Kernel Methods via Random Fourier Features
Mateus P. Otto
Rafael Izbicki
35
1
0
11 Nov 2022
Overparameterized random feature regression with nearly orthogonal data
Zhichao Wang
Yizhe Zhu
26
3
0
11 Nov 2022
On The Relative Error of Random Fourier Features for Preserving Kernel Distance
Kuan Cheng
S. Jiang
Luojian Wei
Zhide Wei
38
1
0
01 Oct 2022
Learning Counterfactually Invariant Predictors
Francesco Quinzan
Cecilia Casolo
Krikamol Muandet
Yucen Luo
Niki Kilbertus
36
8
0
20 Jul 2022
Chefs' Random Tables: Non-Trigonometric Random Features
Valerii Likhosherstov
K. Choromanski
Kumar Avinava Dubey
Frederick Liu
Tamás Sarlós
Adrian Weller
33
17
0
30 May 2022
Memorization and Optimization in Deep Neural Networks with Minimum Over-parameterization
Simone Bombari
Mohammad Hossein Amani
Marco Mondelli
25
26
0
20 May 2022
Generalized Reference Kernel for One-class Classification
Jenni Raitoharju
Alexandros Iosifidis
18
2
0
01 May 2022
Concentration of Random Feature Matrices in High-Dimensions
Zhijun Chen
Hayden Schaeffer
Rachel A. Ward
22
6
0
14 Apr 2022
Near Optimal Reconstruction of Spherical Harmonic Expansions
A. Zandieh
Insu Han
H. Avron
11
0
0
25 Feb 2022
Leverage Score Sampling for Tensor Product Matrices in Input Sparsity Time
David P. Woodruff
A. Zandieh
11
9
0
09 Feb 2022
Random Gegenbauer Features for Scalable Kernel Methods
Insu Han
A. Zandieh
H. Avron
21
4
0
07 Feb 2022
Complex-to-Real Sketches for Tensor Products with Applications to the Polynomial Kernel
Jonas Wacker
Ruben Ohana
Maurizio Filippone
13
2
0
04 Feb 2022
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning
Yuege Xie
Bobby Shi
Hayden Schaeffer
Rachel A. Ward
78
9
0
07 Dec 2021
Bridging the reality gap in quantum devices with physics-aware machine learning
D. L. Craig
H. Moon
F. Fedele
D. Lennon
B. V. Straaten
...
D. Zumbuhl
G. Briggs
Michael A. Osborne
D. Sejdinovic
N. Ares
20
13
0
22 Nov 2021
Sharp Analysis of Random Fourier Features in Classification
Zhu Li
30
6
0
22 Sep 2021
Learning to Forecast Dynamical Systems from Streaming Data
D. Giannakis
Amelia Henriksen
J. Tropp
Rachel A. Ward
AI4TS
35
17
0
20 Sep 2021
Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks
Zhichao Wang
Yizhe Zhu
35
18
0
20 Sep 2021
Fast Sketching of Polynomial Kernels of Polynomial Degree
Zhao-quan Song
David P. Woodruff
Zheng Yu
Lichen Zhang
18
40
0
21 Aug 2021
Exponential Error Convergence in Data Classification with Optimized Random Features: Acceleration by Quantum Machine Learning
H. Yamasaki
Sho Sonoda
25
6
0
16 Jun 2021
Scaling Neural Tangent Kernels via Sketching and Random Features
A. Zandieh
Insu Han
H. Avron
N. Shoham
Chaewon Kim
Jinwoo Shin
11
31
0
15 Jun 2021
Towards an Understanding of Benign Overfitting in Neural Networks
Zhu Li
Zhi-Hua Zhou
A. Gretton
MLT
33
35
0
06 Jun 2021
Sigma-Delta and Distributed Noise-Shaping Quantization Methods for Random Fourier Features
Jinjie Zhang
Harish Kannan
A. Cloninger
Rayan Saab
MQ
13
2
0
04 Jun 2021
Nonlinear Matrix Approximation with Radial Basis Function Components
E. Rebrova
Yu Tang
6
0
0
03 Jun 2021
Random Features for the Neural Tangent Kernel
Insu Han
H. Avron
N. Shoham
Chaewon Kim
Jinwoo Shin
21
9
0
03 Apr 2021
Learning with Neural Tangent Kernels in Near Input Sparsity Time
A. Zandieh
6
0
0
01 Apr 2021
A Temporal Kernel Approach for Deep Learning with Continuous-time Information
Da Xu
Chuanwei Ruan
Evren Körpeoglu
Sushant Kumar
Kannan Achan
SyDa
AI4TS
14
4
0
28 Mar 2021
Fast Statistical Leverage Score Approximation in Kernel Ridge Regression
Yifan Chen
Yun Yang
21
15
0
09 Mar 2021
Quantization Algorithms for Random Fourier Features
Xiaoyun Li
P. Li
MQ
43
13
0
25 Feb 2021
No-Regret Algorithms for Private Gaussian Process Bandit Optimization
Abhimanyu Dubey
14
13
0
24 Feb 2021
Learning with Density Matrices and Random Features
Fabio A. González
Joseph A. Gallego-Mejia
Santiago Toledo-Cortés
Vladimir Vargas-Calderón
19
29
0
08 Feb 2021
Gauss-Legendre Features for Gaussian Process Regression
Paz Fink Shustin
H. Avron
GP
24
11
0
04 Jan 2021
1
2
Next