Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.07612
Cited By
Revisiting Small Batch Training for Deep Neural Networks
20 April 2018
Dominic Masters
Carlo Luschi
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Revisiting Small Batch Training for Deep Neural Networks"
17 / 167 papers shown
Title
Toward Understanding the Impact of Staleness in Distributed Machine Learning
Wei-Ming Dai
Yi Zhou
Nanqing Dong
Huan Zhang
Eric P. Xing
22
80
0
08 Oct 2018
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
35
191
0
02 Oct 2018
Improving Optimization Bounds using Machine Learning: Decision Diagrams meet Deep Reinforcement Learning
Quentin Cappart
Emmanuel Goutierre
David Bergman
Louis-Martin Rousseau
AI4CE
15
55
0
10 Sep 2018
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
57
429
0
22 Aug 2018
Differentially-Private "Draw and Discard" Machine Learning
Vasyl Pihur
Aleksandra Korolova
Frederick Liu
Subhash Sankuratripati
M. Yung
Dachuan Huang
Ruogu Zeng
FedML
24
39
0
11 Jul 2018
Pushing the boundaries of parallel Deep Learning -- A practical approach
Paolo Viviani
M. Drocco
Marco Aldinucci
OOD
20
0
0
25 Jun 2018
Faster SGD training by minibatch persistency
M. Fischetti
Iacopo Mandatelli
Domenico Salvagnin
11
5
0
19 Jun 2018
Full deep neural network training on a pruned weight budget
Maximilian Golub
G. Lemieux
Mieszko Lis
33
28
0
11 Jun 2018
The Effect of Network Width on the Performance of Large-batch Training
Lingjiao Chen
Hongyi Wang
Jinman Zhao
Dimitris Papailiopoulos
Paraschos Koutris
16
22
0
11 Jun 2018
Layer rotation: a surprisingly powerful indicator of generalization in deep networks?
Simon Carbonnelle
Christophe De Vleeschouwer
MLT
11
1
0
05 Jun 2018
Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance Benchmark
Cody Coleman
Daniel Kang
Deepak Narayanan
Luigi Nardi
Tian Zhao
Jian Zhang
Peter Bailis
K. Olukotun
Christopher Ré
Matei A. Zaharia
13
117
0
04 Jun 2018
Backdrop: Stochastic Backpropagation
Siavash Golkar
Kyle Cranmer
36
2
0
04 Jun 2018
Understanding Batch Normalization
Johan Bjorck
Carla P. Gomes
B. Selman
Kilian Q. Weinberger
18
593
0
01 Jun 2018
Amortized Inference Regularization
Rui Shu
Hung Bui
Shengjia Zhao
Mykel J. Kochenderfer
Stefano Ermon
DRL
13
82
0
23 May 2018
Combo Loss: Handling Input and Output Imbalance in Multi-Organ Segmentation
Saeid Asgari Taghanaki
Yefeng Zheng
S. Kevin Zhou
Bogdan Georgescu
Puneet Sharma
Daguang Xu
Dorin Comaniciu
Ghassan Hamarneh
18
328
0
08 May 2018
Deep supervised learning using local errors
Hesham Mostafa
V. Ramesh
Gert Cauwenberghs
25
113
0
17 Nov 2017
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
308
2,890
0
15 Sep 2016
Previous
1
2
3
4