ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.07612
  4. Cited By
Revisiting Small Batch Training for Deep Neural Networks

Revisiting Small Batch Training for Deep Neural Networks

20 April 2018
Dominic Masters
Carlo Luschi
    ODL
ArXivPDFHTML

Papers citing "Revisiting Small Batch Training for Deep Neural Networks"

17 / 167 papers shown
Title
Toward Understanding the Impact of Staleness in Distributed Machine
  Learning
Toward Understanding the Impact of Staleness in Distributed Machine Learning
Wei-Ming Dai
Yi Zhou
Nanqing Dong
Huan Zhang
Eric P. Xing
22
80
0
08 Oct 2018
Implicit Self-Regularization in Deep Neural Networks: Evidence from
  Random Matrix Theory and Implications for Learning
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
35
191
0
02 Oct 2018
Improving Optimization Bounds using Machine Learning: Decision Diagrams
  meet Deep Reinforcement Learning
Improving Optimization Bounds using Machine Learning: Decision Diagrams meet Deep Reinforcement Learning
Quentin Cappart
Emmanuel Goutierre
David Bergman
Louis-Martin Rousseau
AI4CE
15
55
0
10 Sep 2018
Don't Use Large Mini-Batches, Use Local SGD
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
57
429
0
22 Aug 2018
Differentially-Private "Draw and Discard" Machine Learning
Differentially-Private "Draw and Discard" Machine Learning
Vasyl Pihur
Aleksandra Korolova
Frederick Liu
Subhash Sankuratripati
M. Yung
Dachuan Huang
Ruogu Zeng
FedML
24
39
0
11 Jul 2018
Pushing the boundaries of parallel Deep Learning -- A practical approach
Pushing the boundaries of parallel Deep Learning -- A practical approach
Paolo Viviani
M. Drocco
Marco Aldinucci
OOD
20
0
0
25 Jun 2018
Faster SGD training by minibatch persistency
Faster SGD training by minibatch persistency
M. Fischetti
Iacopo Mandatelli
Domenico Salvagnin
11
5
0
19 Jun 2018
Full deep neural network training on a pruned weight budget
Full deep neural network training on a pruned weight budget
Maximilian Golub
G. Lemieux
Mieszko Lis
33
28
0
11 Jun 2018
The Effect of Network Width on the Performance of Large-batch Training
The Effect of Network Width on the Performance of Large-batch Training
Lingjiao Chen
Hongyi Wang
Jinman Zhao
Dimitris Papailiopoulos
Paraschos Koutris
16
22
0
11 Jun 2018
Layer rotation: a surprisingly powerful indicator of generalization in
  deep networks?
Layer rotation: a surprisingly powerful indicator of generalization in deep networks?
Simon Carbonnelle
Christophe De Vleeschouwer
MLT
11
1
0
05 Jun 2018
Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance
  Benchmark
Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance Benchmark
Cody Coleman
Daniel Kang
Deepak Narayanan
Luigi Nardi
Tian Zhao
Jian Zhang
Peter Bailis
K. Olukotun
Christopher Ré
Matei A. Zaharia
13
117
0
04 Jun 2018
Backdrop: Stochastic Backpropagation
Backdrop: Stochastic Backpropagation
Siavash Golkar
Kyle Cranmer
36
2
0
04 Jun 2018
Understanding Batch Normalization
Understanding Batch Normalization
Johan Bjorck
Carla P. Gomes
B. Selman
Kilian Q. Weinberger
18
593
0
01 Jun 2018
Amortized Inference Regularization
Amortized Inference Regularization
Rui Shu
Hung Bui
Shengjia Zhao
Mykel J. Kochenderfer
Stefano Ermon
DRL
13
82
0
23 May 2018
Combo Loss: Handling Input and Output Imbalance in Multi-Organ
  Segmentation
Combo Loss: Handling Input and Output Imbalance in Multi-Organ Segmentation
Saeid Asgari Taghanaki
Yefeng Zheng
S. Kevin Zhou
Bogdan Georgescu
Puneet Sharma
Daguang Xu
Dorin Comaniciu
Ghassan Hamarneh
18
328
0
08 May 2018
Deep supervised learning using local errors
Deep supervised learning using local errors
Hesham Mostafa
V. Ramesh
Gert Cauwenberghs
25
113
0
17 Nov 2017
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
308
2,890
0
15 Sep 2016
Previous
1234