ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.07046
  4. Cited By
Inherent Brain Segmentation Quality Control from Fully ConvNet Monte
  Carlo Sampling

Inherent Brain Segmentation Quality Control from Fully ConvNet Monte Carlo Sampling

19 April 2018
Abhijit Guha Roy
Sailesh Conjeti
Nassir Navab
Christian Wachinger
    UQCV
ArXivPDFHTML

Papers citing "Inherent Brain Segmentation Quality Control from Fully ConvNet Monte Carlo Sampling"

14 / 14 papers shown
Title
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
91
1
0
25 Nov 2024
TMS-Net: A Segmentation Network Coupled With A Run-time Quality Control
  Method For Robust Cardiac Image Segmentation
TMS-Net: A Segmentation Network Coupled With A Run-time Quality Control Method For Robust Cardiac Image Segmentation
F. Uslu
Anil A. Bharath
39
14
0
21 Dec 2022
Influence of uncertainty estimation techniques on false-positive
  reduction in liver lesion detection
Influence of uncertainty estimation techniques on false-positive reduction in liver lesion detection
Ishaan Bhat
J. Pluim
M. Viergever
Hugo J. Kuijf
MedIm
21
4
0
22 Jun 2022
False Positive Detection and Prediction Quality Estimation for LiDAR
  Point Cloud Segmentation
False Positive Detection and Prediction Quality Estimation for LiDAR Point Cloud Segmentation
Pascal Colling
Matthias Rottmann
L. Roese-Koerner
Hanno Gottschalk
3DPC
30
3
0
29 Oct 2021
Modeling Annotation Uncertainty with Gaussian Heatmaps in Landmark
  Localization
Modeling Annotation Uncertainty with Gaussian Heatmaps in Landmark Localization
Franz Thaler
Christian Payer
M. Urschler
Darko Štern
39
10
0
20 Sep 2021
Challenges for machine learning in clinical translation of big data
  imaging studies
Challenges for machine learning in clinical translation of big data imaging studies
Nicola K. Dinsdale
Emma Bluemke
V. Sundaresan
M. Jenkinson
Stephen Smith
Ana I. L. Namburete
AI4CE
32
41
0
07 Jul 2021
Detecting Concept Drift With Neural Network Model Uncertainty
Detecting Concept Drift With Neural Network Model Uncertainty
Lucas Baier
Tim Schlör
Jakob Schöffer
Niklas Kühl
27
27
0
05 Jul 2021
Improving Video Instance Segmentation by Light-weight Temporal
  Uncertainty Estimates
Improving Video Instance Segmentation by Light-weight Temporal Uncertainty Estimates
Kira Maag
Matthias Rottmann
Serin Varghese
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
UQCV
22
12
0
14 Dec 2020
MetaDetect: Uncertainty Quantification and Prediction Quality Estimates
  for Object Detection
MetaDetect: Uncertainty Quantification and Prediction Quality Estimates for Object Detection
Marius Schubert
Karsten Kahl
Matthias Rottmann
UQCV
26
24
0
04 Oct 2020
Give me (un)certainty -- An exploration of parameters that affect
  segmentation uncertainty
Give me (un)certainty -- An exploration of parameters that affect segmentation uncertainty
K. Hoebel
Ken Chang
J. Patel
Praveer Singh
Jayashree Kalpathy-Cramer
UQCV
24
7
0
14 Nov 2019
Going Deep in Medical Image Analysis: Concepts, Methods, Challenges and
  Future Directions
Going Deep in Medical Image Analysis: Concepts, Methods, Challenges and Future Directions
F. Altaf
Syed Mohammed Shamsul Islam
Naveed Akhtar
N. Janjua
OOD
26
200
0
15 Feb 2019
Aleatoric uncertainty estimation with test-time augmentation for medical
  image segmentation with convolutional neural networks
Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
Guotai Wang
Wenqi Li
Michael Aertsen
Jan Deprest
Sebastien Ourselin
Tom Kamiel Magda Vercauteren
UQCV
MedIm
OOD
49
582
0
19 Jul 2018
QuickNAT: A Fully Convolutional Network for Quick and Accurate
  Segmentation of Neuroanatomy
QuickNAT: A Fully Convolutional Network for Quick and Accurate Segmentation of Neuroanatomy
Abhijit Guha Roy
Sailesh Conjeti
Nassir Navab
Christian Wachinger
38
222
0
12 Jan 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1