Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.05862
Cited By
Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-Bayesian Compression Approach
16 April 2018
Wenda Zhou
Victor Veitch
Morgane Austern
Ryan P. Adams
Peter Orbanz
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-Bayesian Compression Approach"
50 / 155 papers shown
Title
Compute-Optimal LLMs Provably Generalize Better With Scale
Marc Finzi
Sanyam Kapoor
Diego Granziol
Anming Gu
Christopher De Sa
J. Zico Kolter
Andrew Gordon Wilson
30
0
0
21 Apr 2025
How good is PAC-Bayes at explaining generalisation?
Antoine Picard-Weibel
Eugenio Clerico
Roman Moscoviz
Benjamin Guedj
64
0
0
11 Mar 2025
Non-vacuous Generalization Bounds for Deep Neural Networks without any modification to the trained models
Khoat Than
Dat Phan
BDL
AAML
VLM
60
0
0
10 Mar 2025
Deep Learning is Not So Mysterious or Different
Andrew Gordon Wilson
41
2
0
03 Mar 2025
Unlocking the Potential of Text-to-Image Diffusion with PAC-Bayesian Theory
Eric Hanchen Jiang
Yasi Zhang
Zhi Zhang
Yixin Wan
Andrew Lizarraga
Shufan Li
Ying Nian Wu
DiffM
77
2
0
25 Nov 2024
Learning via Surrogate PAC-Bayes
Antoine Picard-Weibel
Roman Moscoviz
Benjamin Guedj
25
0
0
14 Oct 2024
Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement
Gaurav Patel
Christopher Sandino
Behrooz Mahasseni
Ellen L. Zippi
Erdrin Azemi
Ali Moin
Juri Minxha
TTA
AI4TS
50
3
0
03 Oct 2024
Tightening the Evaluation of PAC Bounds Using Formal Verification Results
Thomas Walker
A. Lomuscio
24
0
0
29 Jul 2024
Unlocking Tokens as Data Points for Generalization Bounds on Larger Language Models
Sanae Lotfi
Yilun Kuang
Brandon Amos
Micah Goldblum
Marc Finzi
Andrew Gordon Wilson
31
8
0
25 Jul 2024
Exploring The Neural Burden In Pruned Models: An Insight Inspired By Neuroscience
Zeyu Wang
Weichen Dai
Xiangyu Zhou
Ji Qi
Yi Zhou
48
0
0
23 Jul 2024
A Generalization Bound for Nearly-Linear Networks
Eugene Golikov
31
0
0
09 Jul 2024
Information-Theoretic Generalization Bounds for Deep Neural Networks
Haiyun He
Christina Lee Yu
35
4
0
04 Apr 2024
Non-Vacuous Generalization Bounds for Large Language Models
Sanae Lotfi
Marc Finzi
Yilun Kuang
Tim G. J. Rudner
Micah Goldblum
Andrew Gordon Wilson
28
20
0
28 Dec 2023
A note on regularised NTK dynamics with an application to PAC-Bayesian training
Eugenio Clerico
Benjamin Guedj
33
0
0
20 Dec 2023
Perspectives on the State and Future of Deep Learning - 2023
Micah Goldblum
A. Anandkumar
Richard Baraniuk
Tom Goldstein
Kyunghyun Cho
Zachary Chase Lipton
Melanie Mitchell
Preetum Nakkiran
Max Welling
Andrew Gordon Wilson
61
4
0
07 Dec 2023
Interpretability Illusions in the Generalization of Simplified Models
Dan Friedman
Andrew Kyle Lampinen
Lucas Dixon
Danqi Chen
Asma Ghandeharioun
17
14
0
06 Dec 2023
Information-Theoretic Generalization Bounds for Transductive Learning and its Applications
Huayi Tang
Yong Liu
62
1
0
08 Nov 2023
Comparing Comparators in Generalization Bounds
Fredrik Hellström
Benjamin Guedj
28
4
0
16 Oct 2023
Understanding prompt engineering may not require rethinking generalization
Victor Akinwande
Yiding Jiang
Dylan Sam
J. Zico Kolter
VLM
VPVLM
123
7
0
06 Oct 2023
The fine print on tempered posteriors
Konstantinos Pitas
Julyan Arbel
30
1
0
11 Sep 2023
Understanding Deep Neural Networks via Linear Separability of Hidden Layers
Chao Zhang
Xinyuan Chen
Wensheng Li
Lixue Liu
Wei Wu
Dacheng Tao
28
3
0
26 Jul 2023
Sparsity-aware generalization theory for deep neural networks
Ramchandran Muthukumar
Jeremias Sulam
MLT
24
4
0
01 Jul 2023
More PAC-Bayes bounds: From bounded losses, to losses with general tail behaviors, to anytime validity
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
28
9
0
21 Jun 2023
MMD-FUSE: Learning and Combining Kernels for Two-Sample Testing Without Data Splitting
Felix Biggs
Antonin Schrab
A. Gretton
17
19
0
14 Jun 2023
Lessons from Generalization Error Analysis of Federated Learning: You May Communicate Less Often!
Milad Sefidgaran
Romain Chor
A. Zaidi
Yijun Wan
FedML
32
6
0
09 Jun 2023
Understanding Augmentation-based Self-Supervised Representation Learning via RKHS Approximation and Regression
Runtian Zhai
Bing Liu
Andrej Risteski
Zico Kolter
Pradeep Ravikumar
SSL
28
9
0
01 Jun 2023
(Almost) Provable Error Bounds Under Distribution Shift via Disagreement Discrepancy
Elan Rosenfeld
Saurabh Garg
UQCV
34
4
0
01 Jun 2023
On the Role of Noise in the Sample Complexity of Learning Recurrent Neural Networks: Exponential Gaps for Long Sequences
A. F. Pour
H. Ashtiani
19
0
0
28 May 2023
Understanding the Generalization Ability of Deep Learning Algorithms: A Kernelized Renyi's Entropy Perspective
Yuxin Dong
Tieliang Gong
H. Chen
Chen Li
23
4
0
02 May 2023
The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning
Micah Goldblum
Marc Finzi
K. Rowan
A. Wilson
UQCV
FedML
24
37
0
11 Apr 2023
Generalization Error Bounds for Noisy, Iterative Algorithms via Maximal Leakage
Ibrahim Issa
A. Esposito
Michael C. Gastpar
29
2
0
28 Feb 2023
Tighter PAC-Bayes Bounds Through Coin-Betting
Kyoungseok Jang
Kwang-Sung Jun
Ilja Kuzborskij
Francesco Orabona
26
15
0
12 Feb 2023
Gradient Descent in Neural Networks as Sequential Learning in RKBS
A. Shilton
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
MLT
11
1
0
01 Feb 2023
Norm-based Generalization Bounds for Compositionally Sparse Neural Networks
Tomer Galanti
Mengjia Xu
Liane Galanti
T. Poggio
30
9
0
28 Jan 2023
Lifelong Reinforcement Learning with Modulating Masks
Eseoghene Ben-Iwhiwhu
Saptarshi Nath
Praveen K. Pilly
Soheil Kolouri
Andrea Soltoggio
CLL
OffRL
32
20
0
21 Dec 2022
PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization
Sanae Lotfi
Marc Finzi
Sanyam Kapoor
Andres Potapczynski
Micah Goldblum
A. Wilson
BDL
MLT
AI4CE
29
51
0
24 Nov 2022
Instance-Dependent Generalization Bounds via Optimal Transport
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
22
6
0
02 Nov 2022
Tighter PAC-Bayes Generalisation Bounds by Leveraging Example Difficulty
Felix Biggs
Benjamin Guedj
24
7
0
20 Oct 2022
Toward Sustainable Continual Learning: Detection and Knowledge Repurposing of Similar Tasks
Sijia Wang
Yoojin Choi
Junya Chen
Mostafa El-Khamy
Ricardo Henao
CLL
22
0
0
11 Oct 2022
Scale-invariant Bayesian Neural Networks with Connectivity Tangent Kernel
Sungyub Kim
Si-hun Park
Kyungsu Kim
Eunho Yang
BDL
29
4
0
30 Sep 2022
Generalisation under gradient descent via deterministic PAC-Bayes
Eugenio Clerico
Tyler Farghly
George Deligiannidis
Benjamin Guedj
Arnaud Doucet
31
4
0
06 Sep 2022
Efficient Concentration with Gaussian Approximation
Morgane Austern
Lester W. Mackey
13
2
0
21 Aug 2022
On the generalization of learning algorithms that do not converge
N. Chandramoorthy
Andreas Loukas
Khashayar Gatmiry
Stefanie Jegelka
MLT
19
11
0
16 Aug 2022
On Rademacher Complexity-based Generalization Bounds for Deep Learning
Lan V. Truong
MLT
39
13
0
08 Aug 2022
Bounding generalization error with input compression: An empirical study with infinite-width networks
A. Galloway
A. Golubeva
Mahmoud Salem
Mihai Nica
Yani Andrew Ioannou
Graham W. Taylor
MLT
AI4CE
24
4
0
19 Jul 2022
PAC-Bayesian Domain Adaptation Bounds for Multiclass Learners
Anthony Sicilia
Katherine Atwell
Malihe Alikhani
Seong Jae Hwang
BDL
51
9
0
12 Jul 2022
Benefits of Additive Noise in Composing Classes with Bounded Capacity
A. F. Pour
H. Ashtiani
33
3
0
14 Jun 2022
On Margins and Generalisation for Voting Classifiers
Felix Biggs
Valentina Zantedeschi
Benjamin Guedj
25
8
0
09 Jun 2022
Trajectory-dependent Generalization Bounds for Deep Neural Networks via Fractional Brownian Motion
Chengli Tan
Jiang Zhang
Junmin Liu
35
1
0
09 Jun 2022
Robust Fine-Tuning of Deep Neural Networks with Hessian-based Generalization Guarantees
Haotian Ju
Dongyue Li
Hongyang R. Zhang
40
28
0
06 Jun 2022
1
2
3
4
Next