ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.17173
26
20

Non-Vacuous Generalization Bounds for Large Language Models

28 December 2023
Sanae Lotfi
Marc Finzi
Yilun Kuang
Tim G. J. Rudner
Micah Goldblum
Andrew Gordon Wilson
ArXivPDFHTML
Abstract

Modern language models can contain billions of parameters, raising the question of whether they can generalize beyond the training data or simply parrot their training corpora. We provide the first non-vacuous generalization bounds for pretrained large language models (LLMs), indicating that language models are capable of discovering regularities that generalize to unseen data. In particular, we derive a compression bound that is valid for the unbounded log-likelihood loss using prediction smoothing, and we extend the bound to handle subsampling, accelerating bound computation by orders of magnitude on massive datasets. To achieve the extreme level of compression required for non-vacuous bounds, we devise SubLoRA, a simple low-dimensional nonlinear parameterization that leads to non-vacuous generalization bounds for models with nearly a billion parameters. Finally, we use our bounds to understand LLM generalization and find that larger models have better generalization bounds and are more compressible than smaller models.

View on arXiv
Comments on this paper