ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.02719
  4. Cited By
Accelerating MCMC Algorithms

Accelerating MCMC Algorithms

8 April 2018
Christian P. Robert
Victor Elvira
Nicholas G. Tawn
Changye Wu
ArXivPDFHTML

Papers citing "Accelerating MCMC Algorithms"

39 / 39 papers shown
Title
Uncertainty-Aware Surrogate-based Amortized Bayesian Inference for Computationally Expensive Models
Uncertainty-Aware Surrogate-based Amortized Bayesian Inference for Computationally Expensive Models
Stefania Scheurer
Philipp Reiser
Tim Brünnette
Wolfgang Nowak
A. Guthke
Paul-Christian Burkner
36
0
0
13 May 2025
Incorporating the ChEES Criterion into Sequential Monte Carlo Samplers
Incorporating the ChEES Criterion into Sequential Monte Carlo Samplers
Andrew Millard
Joshua Murphy
Daniel Frisch
Simon Maskell
BDL
43
0
0
03 Apr 2025
Accelerating Multilevel Markov Chain Monte Carlo Using Machine Learning
  Models
Accelerating Multilevel Markov Chain Monte Carlo Using Machine Learning Models
Sohail Reddy
Hillary R. Fairbanks
24
1
0
18 May 2024
Graph-accelerated Markov Chain Monte Carlo using Approximate Samples
Graph-accelerated Markov Chain Monte Carlo using Approximate Samples
Leo L. Duan
Anirban Bhattacharya
8
1
0
25 Jan 2024
Bayesian Decision Trees Inspired from Evolutionary Algorithms
Bayesian Decision Trees Inspired from Evolutionary Algorithms
Efthyvoulos Drousiotis
Alexander M. Phillips
P. Spirakis
Simon Maskell
BDL
11
0
0
30 May 2023
Bayesian inference and neural estimation of acoustic wave propagation
Bayesian inference and neural estimation of acoustic wave propagation
Yongchao Huang
Yuhang He
Hong Ge
29
0
0
28 May 2023
Approximate Gibbs Sampler for Efficient Inference of Hierarchical
  Bayesian Models for Grouped Count Data
Approximate Gibbs Sampler for Efficient Inference of Hierarchical Bayesian Models for Grouped Count Data
Jin-Zhu Yu
H. Baroud
9
0
0
28 Nov 2022
Jensen-Shannon Divergence Based Novel Loss Functions for Bayesian Neural
  Networks
Jensen-Shannon Divergence Based Novel Loss Functions for Bayesian Neural Networks
Ponkrshnan Thiagarajan
Susanta Ghosh
BDL
25
8
0
23 Sep 2022
A Variational Approach for Joint Image Recovery and Feature Extraction
  Based on Spatially-Varying Generalised Gaussian Models
A Variational Approach for Joint Image Recovery and Feature Extraction Based on Spatially-Varying Generalised Gaussian Models
Émilie Chouzenoux
M. Corbineau
J. Pesquet
G. Scrivanti
6
1
0
03 Sep 2022
Computing Bayes: From Then 'Til Now'
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
22
15
0
01 Aug 2022
A Tutorial on the Spectral Theory of Markov Chains
A Tutorial on the Spectral Theory of Markov Chains
E. Seabrook
Laurenz Wiskott
14
16
0
05 Jul 2022
Hybrid Machine Learning Modeling of Engineering Systems -- A
  Probabilistic Perspective Tested on a Multiphase Flow Modeling Case Study
Hybrid Machine Learning Modeling of Engineering Systems -- A Probabilistic Perspective Tested on a Multiphase Flow Modeling Case Study
Timur Bikmukhametov
J. Jäschke
AI4CE
14
0
0
18 May 2022
Markov Chain Monte Carlo-Based Machine Unlearning: Unlearning What Needs
  to be Forgotten
Markov Chain Monte Carlo-Based Machine Unlearning: Unlearning What Needs to be Forgotten
Q. Nguyen
Ryutaro Oikawa
D. Divakaran
M. Chan
K. H. Low
MU
17
37
0
28 Feb 2022
Parallel MCMC Without Embarrassing Failures
Parallel MCMC Without Embarrassing Failures
Daniel Augusto R. M. A. de Souza
Diego Mesquita
Samuel Kaski
Luigi Acerbi
36
11
0
22 Feb 2022
Approximating Bayes in the 21st Century
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
32
26
0
20 Dec 2021
Generalized Transitional Markov Chain Monte Carlo Sampling Technique for
  Bayesian Inversion
Generalized Transitional Markov Chain Monte Carlo Sampling Technique for Bayesian Inversion
Han Lu
Mohammad Khalil
T. Catanach
Jiefu Chen
Xuqing Wu
Xin Fu
C. Safta
Yueqin Huang
17
0
0
03 Dec 2021
A Survey of Monte Carlo Methods for Parameter Estimation
A Survey of Monte Carlo Methods for Parameter Estimation
D. Luengo
Luca Martino
M. Bugallo
Victor Elvira
S. Särkkä
14
153
0
25 Jul 2021
Choice of Damping Coefficient in Langevin Dynamics
Choice of Damping Coefficient in Langevin Dynamics
R. Skeel
C. Hartmann
6
5
0
22 Jun 2021
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Chunlei Wang
Sanvesh Srivastava
27
9
0
30 May 2021
Fast ABC with joint generative modelling and subset simulation
Fast ABC with joint generative modelling and subset simulation
Eliane Maalouf
D. Ginsbourger
N. Linde
24
0
0
16 Apr 2021
Sampling and statistical physics via symmetry
Sampling and statistical physics via symmetry
Steve Huntsman
13
2
0
01 Apr 2021
Parallel tempering as a mechanism for facilitating inference in
  hierarchical hidden Markov models
Parallel tempering as a mechanism for facilitating inference in hierarchical hidden Markov models
Giada Sacchi
B. Swallow
9
0
0
19 Nov 2020
MCMC-Interactive Variational Inference
MCMC-Interactive Variational Inference
Quan Zhang
Huangjie Zheng
Mingyuan Zhou
14
1
0
02 Oct 2020
Parallelizing MCMC Sampling via Space Partitioning
Parallelizing MCMC Sampling via Space Partitioning
V. Hafych
P. Eller
O. Schulz
Allen Caldwel
29
4
0
07 Aug 2020
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
40
17
0
14 Apr 2020
Bayesian nonparametric estimation in the current status continuous mark
  model
Bayesian nonparametric estimation in the current status continuous mark model
G. Jongbloed
Frank van der Meulen
L. Pang
20
1
0
23 Nov 2019
Challenges in Markov chain Monte Carlo for Bayesian neural networks
Challenges in Markov chain Monte Carlo for Bayesian neural networks
Theodore Papamarkou
Jacob D. Hinkle
M. T. Young
D. Womble
BDL
31
50
0
15 Oct 2019
Nearly Consistent Finite Particle Estimates in Streaming Importance
  Sampling
Nearly Consistent Finite Particle Estimates in Streaming Importance Sampling
Alec Koppel
Amrit Singh Bedi
Brian M. Sadler
Victor Elvira
21
2
0
23 Sep 2019
Analyzing MCMC Output
Analyzing MCMC Output
Dootika Vats
Nathan Robertson
James M. Flegal
Galin L. Jones
13
1
0
26 Jul 2019
Transport Monte Carlo: High-Accuracy Posterior Approximation via Random
  Transport
Transport Monte Carlo: High-Accuracy Posterior Approximation via Random Transport
L. Duan
OT
29
11
0
24 Jul 2019
A Metropolis-class sampler for targets with non-convex support
A Metropolis-class sampler for targets with non-convex support
John Moriarty
Jure Vogrinc
Alessandro Zocca
11
5
0
23 May 2019
Gaussbock: Fast parallel-iterative cosmological parameter estimation
  with Bayesian nonparametrics
Gaussbock: Fast parallel-iterative cosmological parameter estimation with Bayesian nonparametrics
Ben Moews
J. Zuntz
14
2
0
23 May 2019
Preconditioned P-ULA for Joint Deconvolution-Segmentation of Ultrasound
  Images -- Extended Version
Preconditioned P-ULA for Joint Deconvolution-Segmentation of Ultrasound Images -- Extended Version
M. Corbineau
Denis Kouamé
Émilie Chouzenoux
J. Tourneret
J. Pesquet
14
15
0
19 Mar 2019
Embarrassingly parallel MCMC using deep invertible transformations
Embarrassingly parallel MCMC using deep invertible transformations
Diego Mesquita
P. Blomstedt
Samuel Kaski
9
18
0
11 Mar 2019
Fast Markov Chain Monte Carlo Algorithms via Lie Groups
Fast Markov Chain Monte Carlo Algorithms via Lie Groups
Steve Huntsman
16
2
0
24 Jan 2019
Surrogate-assisted parallel tempering for Bayesian neural learning
Surrogate-assisted parallel tempering for Bayesian neural learning
Rohitash Chandra
Konark Jain
Arpit Kapoor
Ashray Aman
BDL
9
8
0
21 Nov 2018
Automated Scalable Bayesian Inference via Hilbert Coresets
Automated Scalable Bayesian Inference via Hilbert Coresets
Trevor Campbell
Tamara Broderick
19
127
0
13 Oct 2017
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
58
231
0
11 Jul 2016
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
1