ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.11680
8
1

Analyzing MCMC Output

26 July 2019
Dootika Vats
Nathan Robertson
James M. Flegal
Galin L. Jones
ArXivPDFHTML
Abstract

Markov chain Monte Carlo (MCMC) is a sampling-based method for estimating features of probability distributions. MCMC methods produce a serially correlated, yet representative, sample from the desired distribution. As such it can be difficult to know when the MCMC method is producing reliable results. We introduce some fundamental methods for ensuring a trustworthy simulation experiment. In particular, we present a workflow for output analysis in MCMC providing estimators, approximate sampling distributions, stopping rules, and visualization tools.

View on arXiv
Comments on this paper