Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.02379
Cited By
EPINET: A Fully-Convolutional Neural Network Using Epipolar Geometry for Depth from Light Field Images
6 April 2018
Changha Shin
Hae-Gon Jeon
Youngjin Yoon
In So Kweon
Seon Joo Kim
MDE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"EPINET: A Fully-Convolutional Neural Network Using Epipolar Geometry for Depth from Light Field Images"
6 / 6 papers shown
Title
Learning to Synthesize a 4D RGBD Light Field from a Single Image
Pratul P. Srinivasan
Tongzhou Wang
Ashwin Sreelal
R. Ramamoorthi
Ren Ng
3DV
57
238
0
10 Aug 2017
Learning-Based View Synthesis for Light Field Cameras
N. Kalantari
Tingxian Wang
R. Ramamoorthi
3DV
124
683
0
09 Sep 2016
A 4D Light-Field Dataset and CNN Architectures for Material Recognition
Tingxian Wang
Jun-Yan Zhu
Hiroaki Ebi
Manmohan Chandraker
Alexei A. Efros
R. Ramamoorthi
3DV
49
187
0
24 Aug 2016
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
730
37,843
0
20 May 2016
A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation
N. Mayer
Eddy Ilg
Philip Häusser
Philipp Fischer
Daniel Cremers
Alexey Dosovitskiy
Thomas Brox
3DPC
61
2,644
0
07 Dec 2015
FlowNet: Learning Optical Flow with Convolutional Networks
Philipp Fischer
Alexey Dosovitskiy
Eddy Ilg
Philip Häusser
C. Hazirbas
Vladimir Golkov
Patrick van der Smagt
Daniel Cremers
Thomas Brox
3DPC
308
4,172
0
26 Apr 2015
1