ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.10228
  4. Cited By
Demystifying Differentiable Programming: Shift/Reset the Penultimate
  Backpropagator
v1v2v3 (latest)

Demystifying Differentiable Programming: Shift/Reset the Penultimate Backpropagator

27 March 2018
Fei Wang
Daniel Zheng
James M. Decker
Xilun Wu
Grégory M. Essertel
Tiark Rompf
    ODL
ArXiv (abs)PDFHTML

Papers citing "Demystifying Differentiable Programming: Shift/Reset the Penultimate Backpropagator"

27 / 27 papers shown
Title
Automatic Functional Differentiation in JAX
Automatic Functional Differentiation in JAX
Min Lin
29
4
0
30 Nov 2023
Understanding Automatic Differentiation Pitfalls
Understanding Automatic Differentiation Pitfalls
Jan Huckelheim
Harshitha Menon
William S. Moses
Bruce Christianson
P. Hovland
Laurent Hascoet
PINN
68
4
0
12 May 2023
$\nabla$SD: Differentiable Programming for Sparse Tensors
∇\nabla∇SD: Differentiable Programming for Sparse Tensors
Amir Shaikhha
Mathieu Huot
Shideh Hashemian
87
2
0
13 Mar 2023
Efficient and Sound Differentiable Programming in a Functional
  Array-Processing Language
Efficient and Sound Differentiable Programming in a Functional Array-Processing Language
Amir Shaikhha
Mathieu Huot
Shabnam Ghasemirad
Andrew Fitzgibbon
S. Jones
Dimitrios Vytiniotis
84
1
0
20 Dec 2022
Differentiable Quantum Programming with Unbounded Loops
Differentiable Quantum Programming with Unbounded Loops
Wang Fang
Mingsheng Ying
Xiaodi Wu
36
1
0
08 Nov 2022
Nesting Forward Automatic Differentiation for Memory-Efficient Deep
  Neural Network Training
Nesting Forward Automatic Differentiation for Memory-Efficient Deep Neural Network Training
Cong Guo
Yuxian Qiu
Jingwen Leng
Chen Zhang
Yingdian Cao
Quan Zhang
Yunxin Liu
Fan Yang
Minyi Guo
AI4CE
97
4
0
22 Sep 2022
Combinatory Adjoints and Differentiation
Combinatory Adjoints and Differentiation
M. Elsman
F. Henglein
R. Kaarsgaard
Mikkel Kragh Mathiesen
Robert Schenck
31
2
0
02 Jul 2022
Differentiable programming: Generalization, characterization and
  limitations of deep learning
Differentiable programming: Generalization, characterization and limitations of deep learning
Adrián Hernández
G. Millérioux
José M. Amigó
112
2
0
13 May 2022
AD for an Array Language with Nested Parallelism
AD for an Array Language with Nested Parallelism
Robert Schenck
O. Rønning
Troels Henriksen
C. Oancea
39
10
0
21 Feb 2022
Coarsening Optimization for Differentiable Programming
Coarsening Optimization for Differentiable Programming
Xipeng Shen
Guoqiang Zhang
Irene Dea
S. Andow
Emilio Arroyo-Fang
...
E. Meijer
Steffi Stumpos
Alanna Tempest
Christy Warden
Shannon Yang
40
2
0
05 Oct 2021
Functorial String Diagrams for Reverse-Mode Automatic Differentiation
Functorial String Diagrams for Reverse-Mode Automatic Differentiation
Mario Alvarez-Picallo
D. Ghica
David Sprunger
Fabio Zanasi
53
17
0
28 Jul 2021
Swift for TensorFlow: A portable, flexible platform for deep learning
Swift for TensorFlow: A portable, flexible platform for deep learning
Brennan Saeta
Denys Shabalin
M. Rasi
Brad Larson
Xihui Wu
...
Saleem Abdulrasool
A. Efremov
Dave Abrahams
Chris Lattner
Richard Wei
HAI
69
11
0
26 Feb 2021
Automatic Differentiation via Effects and Handlers: An Implementation in
  Frank
Automatic Differentiation via Effects and Handlers: An Implementation in Frank
Jesse Sigal
21
6
0
20 Jan 2021
Using Differentiable Programming for Flexible Statistical Modeling
Using Differentiable Programming for Flexible Statistical Modeling
Maren Hackenberg
M. Grodd
Clemens Kreutz
Martina Fischer
J. Esins
L. Grabenhenrich
C. Karagiannidis
Harald Binder
37
4
0
07 Dec 2020
Differentiating a Tensor Language
Differentiating a Tensor Language
Gilbert Bernstein
Michael Mara
Tzu-Mao Li
D. Maclaurin
Jonathan Ragan-Kelley
60
12
0
25 Aug 2020
Differentiable Programming for Hyperspectral Unmixing using a
  Physics-based Dispersion Model
Differentiable Programming for Hyperspectral Unmixing using a Physics-based Dispersion Model
J. Janiczek
Parth Thaker
Gautam Dasarathy
C. Edwards
P. Christensen
Suren Jayasuriya
141
3
0
12 Jul 2020
On Correctness of Automatic Differentiation for Non-Differentiable
  Functions
On Correctness of Automatic Differentiation for Non-Differentiable Functions
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
86
41
0
12 Jun 2020
A Differential-form Pullback Programming Language for Higher-order
  Reverse-mode Automatic Differentiation
A Differential-form Pullback Programming Language for Higher-order Reverse-mode Automatic Differentiation
Carol Mak
C.-H. Luke Ong
102
10
0
19 Feb 2020
Resilient Cyberphysical Systems and their Application Drivers: A
  Technology Roadmap
Resilient Cyberphysical Systems and their Application Drivers: A Technology Roadmap
Somali Chaterji
Parinaz Naghizadeh Ardabili
M. A. Alam
S. Bagchi
M. Chiang
...
Tiark Rompf
A. Sabharwal
S. Sundaram
James Weimer
Jennifer Weller
62
16
0
20 Dec 2019
A Simple Differentiable Programming Language
A Simple Differentiable Programming Language
M. Abadi
G. Plotkin
68
66
0
11 Nov 2019
Backpropagation in the Simply Typed Lambda-calculus with Linear Negation
Backpropagation in the Simply Typed Lambda-calculus with Linear Negation
Aloïs Brunel
Damiano Mazza
Michele Pagani
76
46
0
27 Sep 2019
Functional probabilistic programming for scalable Bayesian modelling
Functional probabilistic programming for scalable Bayesian modelling
Jonathan Law
D. Wilkinson
20
1
0
06 Aug 2019
A Differentiable Programming System to Bridge Machine Learning and
  Scientific Computing
A Differentiable Programming System to Bridge Machine Learning and Scientific Computing
Mike Innes
Alan Edelman
Keno Fischer
Chris Rackauckas
Elliot Saba
Viral B. Shah
Will Tebbutt
PINN
99
184
0
17 Jul 2019
Relay: A High-Level Compiler for Deep Learning
Relay: A High-Level Compiler for Deep Learning
Jared Roesch
Steven Lyubomirsky
Marisa Kirisame
Logan Weber
Josh Pollock
Luis Vega
Ziheng Jiang
Tianqi Chen
T. Moreau
Zachary Tatlock
75
21
0
17 Apr 2019
Residual Reinforcement Learning for Robot Control
Residual Reinforcement Learning for Robot Control
T. Johannink
Shikhar Bahl
Ashvin Nair
Jianlan Luo
Avinash Kumar
M. Loskyll
J. A. Ojea
Eugen Solowjow
Sergey Levine
OffRL
90
420
0
07 Dec 2018
Deep learning for pedestrians: backpropagation in CNNs
Deep learning for pedestrians: backpropagation in CNNs
L. Boué
3DVPINN
41
4
0
29 Nov 2018
AutoGraph: Imperative-style Coding with Graph-based Performance
AutoGraph: Imperative-style Coding with Graph-based Performance
D. Moldovan
James M. Decker
Fei Wang
A. A. Johnson
Brian K. Lee
Zachary Nado
D. Sculley
Tiark Rompf
Alexander B. Wiltschko
60
43
0
16 Oct 2018
1