ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.06898
12
2

Differentiable programming: Generalization, characterization and limitations of deep learning

13 May 2022
Adrián Hernández
G. Millérioux
José M. Amigó
ArXivPDFHTML
Abstract

In the past years, deep learning models have been successfully applied in several cognitive tasks. Originally inspired by neuroscience, these models are specific examples of differentiable programs. In this paper we define and motivate differentiable programming, as well as specify some program characteristics that allow us to incorporate the structure of the problem in a differentiable program. We analyze different types of differentiable programs, from more general to more specific, and evaluate, for a specific problem with a graph dataset, its structure and knowledge with several differentiable programs using those characteristics. Finally, we discuss some inherent limitations of deep learning and differentiable programs, which are key challenges in advancing artificial intelligence, and then analyze possible solutions

View on arXiv
Comments on this paper