ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.10075
  4. Cited By
A Framework for Evaluating 6-DOF Object Trackers

A Framework for Evaluating 6-DOF Object Trackers

27 March 2018
Mathieu Garon
D. Laurendeau
Jean-François Lalonde
ArXivPDFHTML

Papers citing "A Framework for Evaluating 6-DOF Object Trackers"

4 / 4 papers shown
Title
A Flexible-Frame-Rate Vision-Aided Inertial Object Tracking System for
  Mobile Devices
A Flexible-Frame-Rate Vision-Aided Inertial Object Tracking System for Mobile Devices
Yo-Chung Lau
Kuan-Wei Tseng
I-Ju Hsieh
Hsiao-Ching Tseng
Yi-ping Hung
41
1
0
22 Oct 2022
RGB-D-E: Event Camera Calibration for Fast 6-DOF Object Tracking
RGB-D-E: Event Camera Calibration for Fast 6-DOF Object Tracking
Etienne Dubeau
Mathieu Garon
B. Debaque
Raoul de Charette
Jean-François Lalonde
26
17
0
09 Jun 2020
A Region-based Gauss-Newton Approach to Real-Time Monocular Multiple
  Object Tracking
A Region-based Gauss-Newton Approach to Real-Time Monocular Multiple Object Tracking
H. Tjaden
Ulrich Schwanecke
E. Schömer
Daniel Cremers
36
84
0
05 Jul 2018
Recovering 6D Object Pose and Predicting Next-Best-View in the Crowd
Recovering 6D Object Pose and Predicting Next-Best-View in the Crowd
Andreas Doumanoglou
R. Kouskouridas
S. Malassiotis
Tae-Kyun Kim
3DPC
127
227
0
23 Dec 2015
1