ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.05589
  4. Cited By
Variational Message Passing with Structured Inference Networks
v1v2 (latest)

Variational Message Passing with Structured Inference Networks

15 March 2018
Wu Lin
Nicolas Hubacher
Mohammad Emtiyaz Khan
    BDL
ArXiv (abs)PDFHTML

Papers citing "Variational Message Passing with Structured Inference Networks"

32 / 32 papers shown
Title
Tree-based variational inference for Poisson log-normal models
Tree-based variational inference for Poisson log-normal models
Alexandre Chaussard
Anna Bonnet
Elisabeth Gassiat
Sylvain Le Corff
70
0
0
25 Jun 2024
Importance sampling for online variational learning
Importance sampling for online variational learning
A. Vasudevan
P. Gloaguen
Sylvain Le Corff
Jimmy Olsson
75
0
0
05 Feb 2024
Variational excess risk bound for general state space models
Variational excess risk bound for general state space models
Elisabeth Gassiat
Sylvain Le Corff
DRL
65
1
0
15 Dec 2023
Amortised Inference in Bayesian Neural Networks
Amortised Inference in Bayesian Neural Networks
Tommy Rochussen
UQCVBDL
76
0
0
06 Sep 2023
Exploiting Inferential Structure in Neural Processes
Exploiting Inferential Structure in Neural Processes
Dharmesh Tailor
Mohammad Emtiyaz Khan
Eric Nalisnick
BDL
89
1
0
27 Jun 2023
Unbiased Learning of Deep Generative Models with Structured Discrete
  Representations
Unbiased Learning of Deep Generative Models with Structured Discrete Representations
H. Bendekgey
Gabriel Hope
Erik B. Sudderth
OCLBDLDRL
63
1
0
14 Jun 2023
Revisiting Structured Variational Autoencoders
Revisiting Structured Variational Autoencoders
Yixiu Zhao
Scott W. Linderman
BDLDRL
59
9
0
25 May 2023
Physics-enhanced Gaussian Process Variational Autoencoder
Physics-enhanced Gaussian Process Variational Autoencoder
Thomas Beckers
Qirui Wu
George J. Pappas
DRL
75
4
0
15 May 2023
Structured Recognition for Generative Models with Explaining Away
Structured Recognition for Generative Models with Explaining Away
Changmin Yu
Hugo Soulat
Neil Burgess
M. Sahani
CMLBDL
94
3
0
12 Sep 2022
Amortized backward variational inference in nonlinear state-space models
Amortized backward variational inference in nonlinear state-space models
Mathis Chagneux
Elisabeth Gassiat
P. Gloaguen
Sylvain Le Corff
63
0
0
01 Jun 2022
Graph-Guided Network for Irregularly Sampled Multivariate Time Series
Graph-Guided Network for Irregularly Sampled Multivariate Time Series
Xiang Zhang
M. Zeman
Theodoros Tsiligkaridis
Marinka Zitnik
MLAUAI4TS
113
113
0
11 Oct 2021
Realising Active Inference in Variational Message Passing: the
  Outcome-blind Certainty Seeker
Realising Active Inference in Variational Message Passing: the Outcome-blind Certainty Seeker
Théophile Champion
Marek Grze's
Howard L. Bowman
56
1
0
23 Apr 2021
Meta-Learning with Variational Bayes
Meta-Learning with Variational Bayes
Lucas Lingle
BDLOOD
49
0
0
03 Mar 2021
Scalable Gaussian Process Variational Autoencoders
Scalable Gaussian Process Variational Autoencoders
Metod Jazbec
Matthew Ashman
Vincent Fortuin
Michael Pearce
Stephan Mandt
Gunnar Rätsch
DRLBDL
89
29
0
26 Oct 2020
Sparse Gaussian Process Variational Autoencoders
Sparse Gaussian Process Variational Autoencoders
Matthew Ashman
Jonathan So
Will Tebbutt
Vincent Fortuin
Michael Pearce
Richard Turner
127
35
0
20 Oct 2020
Variational Mixture of Normalizing Flows
Variational Mixture of Normalizing Flows
Guilherme G. P. Freitas Pires
Mário A. T. Figueiredo
BDLDRL
61
16
0
01 Sep 2020
Model-based Clustering using Automatic Differentiation: Confronting
  Misspecification and High-Dimensional Data
Model-based Clustering using Automatic Differentiation: Confronting Misspecification and High-Dimensional Data
Siva Rajesh Kasa
Vaibhav Rajan
41
0
0
08 Jul 2020
Deep Structural Causal Models for Tractable Counterfactual Inference
Deep Structural Causal Models for Tractable Counterfactual Inference
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
CMLMedIm
131
243
0
11 Jun 2020
A Convolutional Deep Markov Model for Unsupervised Speech Representation
  Learning
A Convolutional Deep Markov Model for Unsupervised Speech Representation Learning
Sameer Khurana
Antoine Laurent
Wei-Ning Hsu
J. Chorowski
A. Lancucki
R. Marxer
James R. Glass
SSLBDL
80
29
0
03 Jun 2020
Variational Autoencoder with Embedded Student-$t$ Mixture Model for
  Authorship Attribution
Variational Autoencoder with Embedded Student-ttt Mixture Model for Authorship Attribution
Benedikt T. Boenninghoff
Steffen Zeiler
R. M. Nickel
D. Kolossa
BDLDRL
73
2
0
28 May 2020
Amortised Learning by Wake-Sleep
Amortised Learning by Wake-Sleep
W. Li
Theodore H. Moskovitz
Heishiro Kanagawa
M. Sahani
OOD
118
7
0
22 Feb 2020
Inference for Network Structure and Dynamics from Time Series Data via
  Graph Neural Network
Inference for Network Structure and Dynamics from Time Series Data via Graph Neural Network
Mengyuan Chen
Jiang Zhang
Zhang Zhang
Lun Du
Qiao Hu
Shuo Wang
Jiaqi Zhu
AI4CE
20
8
0
18 Jan 2020
Continuous Graph Flow
Continuous Graph Flow
Zhiwei Deng
Megha Nawhal
Lili Meng
Greg Mori
56
3
0
07 Aug 2019
Unsupervised Separation of Dynamics from Pixels
Unsupervised Separation of Dynamics from Pixels
Silvia Chiappa
Ulrich Paquet
OCL
57
4
0
20 Jul 2019
Factorized Inference in Deep Markov Models for Incomplete Multimodal
  Time Series
Factorized Inference in Deep Markov Models for Incomplete Multimodal Time Series
Zhi-Xuan Tan
Harold Soh
Desmond C. Ong
AI4TS
97
29
0
30 May 2019
Correlated Variational Auto-Encoders
Correlated Variational Auto-Encoders
Da Tang
Dawen Liang
Tony Jebara
Nicholas Ruozzi
CMLGNN
84
21
0
14 May 2019
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for
  Health Profiling
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for Health Profiling
Hao Wang
Chengzhi Mao
Hao He
Mingmin Zhao
Tommi Jaakkola
Dina Katabi
BDL
135
22
0
06 Feb 2019
A Factorial Mixture Prior for Compositional Deep Generative Models
A Factorial Mixture Prior for Compositional Deep Generative Models
Ulrich Paquet
Sumedh Ghaisas
O. Tieleman
CoGe
37
1
0
18 Dec 2018
Semi-crowdsourced Clustering with Deep Generative Models
Semi-crowdsourced Clustering with Deep Generative Models
Yucen Luo
Tian Tian
Jiaxin Shi
Jun Zhu
Bo Zhang
52
18
0
29 Oct 2018
The LORACs prior for VAEs: Letting the Trees Speak for the Data
The LORACs prior for VAEs: Letting the Trees Speak for the Data
Sharad Vikram
Matthew D. Hoffman
Matthew J. Johnson
CMLBDL
79
15
0
16 Oct 2018
Graphical Generative Adversarial Networks
Graphical Generative Adversarial Networks
Chongxuan Li
Max Welling
Jun Zhu
Bo Zhang
GAN
54
36
0
10 Apr 2018
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
241
698
0
15 Nov 2017
1