ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.04674
  4. Cited By
Hierarchical Reinforcement Learning: Approximating Optimal Discounted
  TSP Using Local Policies

Hierarchical Reinforcement Learning: Approximating Optimal Discounted TSP Using Local Policies

13 March 2018
Tom Zahavy
Avinatan Hassidim
Haim Kaplan
Yishay Mansour
ArXiv (abs)PDFHTML

Papers citing "Hierarchical Reinforcement Learning: Approximating Optimal Discounted TSP Using Local Policies"

7 / 7 papers shown
Title
Mastering Chess and Shogi by Self-Play with a General Reinforcement
  Learning Algorithm
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
David Silver
Thomas Hubert
Julian Schrittwieser
Ioannis Antonoglou
Matthew Lai
...
D. Kumaran
T. Graepel
Timothy Lillicrap
Karen Simonyan
Demis Hassabis
153
1,782
0
05 Dec 2017
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning
I. Higgins
Arka Pal
Andrei A. Rusu
Loic Matthey
Christopher P. Burgess
Alexander Pritzel
M. Botvinick
Charles Blundell
Alexander Lerchner
DRL
112
417
0
26 Jul 2017
FeUdal Networks for Hierarchical Reinforcement Learning
FeUdal Networks for Hierarchical Reinforcement Learning
A. Vezhnevets
Simon Osindero
Tom Schaul
N. Heess
Max Jaderberg
David Silver
Koray Kavukcuoglu
FedML
96
907
0
03 Mar 2017
DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker
DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker
Matej Moravcík
Martin Schmid
Neil Burch
Viliam Lisý
Dustin Morrill
Nolan Bard
Trevor Davis
Kevin Waugh
Michael Bradley Johanson
Michael Bowling
BDL
211
912
0
06 Jan 2017
ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement
  Learning
ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning
Michal Kempka
Marek Wydmuch
Grzegorz Runc
Jakub Toczek
Wojciech Ja'skowski
82
700
0
06 May 2016
Hierarchical Deep Reinforcement Learning: Integrating Temporal
  Abstraction and Intrinsic Motivation
Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation
Tejas D. Kulkarni
Karthik Narasimhan
A. Saeedi
J. Tenenbaum
74
1,137
0
20 Apr 2016
The Arcade Learning Environment: An Evaluation Platform for General
  Agents
The Arcade Learning Environment: An Evaluation Platform for General Agents
Marc G. Bellemare
Yavar Naddaf
J. Veness
Michael Bowling
120
3,021
0
19 Jul 2012
1