ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.03764
  4. Cited By
Variance Networks: When Expectation Does Not Meet Your Expectations

Variance Networks: When Expectation Does Not Meet Your Expectations

10 March 2018
Kirill Neklyudov
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
    UQCV
ArXivPDFHTML

Papers citing "Variance Networks: When Expectation Does Not Meet Your Expectations"

20 / 20 papers shown
Title
Perceive With Confidence: Statistical Safety Assurances for Navigation with Learning-Based Perception
Perceive With Confidence: Statistical Safety Assurances for Navigation with Learning-Based Perception
Anushri Dixit
Zhiting Mei
Meghan Booker
Mariko Storey-Matsutani
Mariko Storey-Matsutani
Allen Z. Ren
Ola Shorinwa
Anirudha Majumdar
140
6
0
13 Mar 2024
Predictive Uncertainty Estimation via Prior Networks
Predictive Uncertainty Estimation via Prior Networks
A. Malinin
Mark Gales
UD
BDL
EDL
UQCV
PER
162
907
0
28 Feb 2018
Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs
Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs
T. Garipov
Pavel Izmailov
Dmitrii Podoprikhin
Dmitry Vetrov
A. Wilson
UQCV
54
746
0
27 Feb 2018
Variational Gaussian Dropout is not Bayesian
Variational Gaussian Dropout is not Bayesian
Jiri Hron
A. G. Matthews
Zoubin Ghahramani
42
47
0
08 Nov 2017
Noisy Networks for Exploration
Noisy Networks for Exploration
Meire Fortunato
M. G. Azar
Bilal Piot
Jacob Menick
Ian Osband
...
Rémi Munos
Demis Hassabis
Olivier Pietquin
Charles Blundell
Shane Legg
57
890
0
30 Jun 2017
Parameter Space Noise for Exploration
Parameter Space Noise for Exploration
Matthias Plappert
Rein Houthooft
Prafulla Dhariwal
Szymon Sidor
Richard Y. Chen
Xi Chen
Tamim Asfour
Pieter Abbeel
Marcin Andrychowicz
45
594
0
06 Jun 2017
Structured Bayesian Pruning via Log-Normal Multiplicative Noise
Structured Bayesian Pruning via Log-Normal Multiplicative Noise
Kirill Neklyudov
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
BDL
81
188
0
20 May 2017
Variational Dropout Sparsifies Deep Neural Networks
Variational Dropout Sparsifies Deep Neural Networks
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
BDL
83
825
0
19 Jan 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
463
5,748
0
05 Dec 2016
Learning Structured Sparsity in Deep Neural Networks
Learning Structured Sparsity in Deep Neural Networks
W. Wen
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
102
2,331
0
12 Aug 2016
Learning both Weights and Connections for Efficient Neural Networks
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
212
6,628
0
08 Jun 2015
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
144
1,500
0
08 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
439
9,233
0
06 Jun 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
102
1,878
0
20 May 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
60
940
0
18 Feb 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
276
43,154
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
678
149,474
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
155
18,922
0
20 Dec 2014
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
66
902
0
17 Feb 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
344
16,972
0
20 Dec 2013
1