ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.02991
  4. Cited By
Disentangled Sequential Autoencoder

Disentangled Sequential Autoencoder

8 March 2018
Yingzhen Li
Stephan Mandt
    CoGe
ArXivPDFHTML

Papers citing "Disentangled Sequential Autoencoder"

12 / 62 papers shown
Title
Stochastic Latent Residual Video Prediction
Stochastic Latent Residual Video Prediction
Jean-Yves Franceschi
E. Delasalles
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
VGen
33
159
0
21 Feb 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
314
0
07 Feb 2020
GP-VAE: Deep Probabilistic Time Series Imputation
GP-VAE: Deep Probabilistic Time Series Imputation
Vincent Fortuin
Dmitry Baranchuk
Gunnar Rätsch
Stephan Mandt
BDL
AI4TS
32
247
0
09 Jul 2019
ODE$^2$VAE: Deep generative second order ODEs with Bayesian neural
  networks
ODE2^22VAE: Deep generative second order ODEs with Bayesian neural networks
Çağatay Yıldız
Markus Heinonen
Harri Lähdesmäki
BDL
DRL
37
88
0
27 May 2019
Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep
  Feature Spaces
Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces
P. Becker
Harit Pandya
Gregor H. W. Gebhardt
Cheng Zhao
James Taylor
Gerhard Neumann
BDL
24
94
0
17 May 2019
Disentangling Factors of Variation Using Few Labels
Disentangling Factors of Variation Using Few Labels
Francesco Locatello
Michael Tschannen
Stefan Bauer
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
DRL
CML
CoGe
34
123
0
03 May 2019
Keyframing the Future: Keyframe Discovery for Visual Prediction and
  Planning
Keyframing the Future: Keyframe Discovery for Visual Prediction and Planning
Karl Pertsch
Oleh Rybkin
Jingyun Yang
Shenghao Zhou
Konstantinos G. Derpanis
Kostas Daniilidis
Joseph J. Lim
Andrew Jaegle
VGen
54
24
0
11 Apr 2019
Learning Independently-Obtainable Reward Functions
Learning Independently-Obtainable Reward Functions
Christopher Grimm
Satinder Singh
19
4
0
24 Jan 2019
Unsupervised learning with contrastive latent variable models
Unsupervised learning with contrastive latent variable models
Kristen A. Severson
S. Ghosh
Kenney Ng
SSL
DRL
27
38
0
14 Nov 2018
Deep Generative Video Compression
Deep Generative Video Compression
Jun Han
Salvator Lombardo
Christopher Schroers
Stephan Mandt
VGen
32
58
0
05 Oct 2018
A Probabilistic Semi-Supervised Approach to Multi-Task Human Activity
  Modeling
A Probabilistic Semi-Supervised Approach to Multi-Task Human Activity Modeling
Judith Butepage
Hedvig Kjellström
Danica Kragic
56
8
0
24 Sep 2018
InfoCatVAE: Representation Learning with Categorical Variational
  Autoencoders
InfoCatVAE: Representation Learning with Categorical Variational Autoencoders
Edouard Pineau
Marc Lelarge
DRL
14
13
0
20 Jun 2018
Previous
12